• Title/Summary/Keyword: Smart Feature

Search Result 479, Processing Time 0.027 seconds

CNN based data anomaly detection using multi-channel imagery for structural health monitoring

  • Shajihan, Shaik Althaf V.;Wang, Shuo;Zhai, Guanghao;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.181-193
    • /
    • 2022
  • Data-driven structural health monitoring (SHM) of civil infrastructure can be used to continuously assess the state of a structure, allowing preemptive safety measures to be carried out. Long-term monitoring of large-scale civil infrastructure often involves data-collection using a network of numerous sensors of various types. Malfunctioning sensors in the network are common, which can disrupt the condition assessment and even lead to false-negative indications of damage. The overwhelming size of the data collected renders manual approaches to ensure data quality intractable. The task of detecting and classifying an anomaly in the raw data is non-trivial. We propose an approach to automate this task, improving upon the previously developed technique of image-based pre-processing on one-dimensional (1D) data by enriching the features of the neural network input data with multiple channels. In particular, feature engineering is employed to convert the measured time histories into a 3-channel image comprised of (i) the time history, (ii) the spectrogram, and (iii) the probability density function representation of the signal. To demonstrate this approach, a CNN model is designed and trained on a dataset consisting of acceleration records of sensors installed on a long-span bridge, with the goal of fault detection and classification. The effect of imbalance in anomaly patterns observed is studied to better account for unseen test cases. The proposed framework achieves high overall accuracy and recall even when tested on an unseen dataset that is much larger than the samples used for training, offering a viable solution for implementation on full-scale structures where limited labeled-training data is available.

A semi-supervised interpretable machine learning framework for sensor fault detection

  • Martakis, Panagiotis;Movsessian, Artur;Reuland, Yves;Pai, Sai G.S.;Quqa, Said;Cava, David Garcia;Tcherniak, Dmitri;Chatzi, Eleni
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.251-266
    • /
    • 2022
  • Structural Health Monitoring (SHM) of critical infrastructure comprises a major pillar of maintenance management, shielding public safety and economic sustainability. Although SHM is usually associated with data-driven metrics and thresholds, expert judgement is essential, especially in cases where erroneous predictions can bear casualties or substantial economic loss. Considering that visual inspections are time consuming and potentially subjective, artificial-intelligence tools may be leveraged in order to minimize the inspection effort and provide objective outcomes. In this context, timely detection of sensor malfunctioning is crucial in preventing inaccurate assessment and false alarms. The present work introduces a sensor-fault detection and interpretation framework, based on the well-established support-vector machine scheme for anomaly detection, combined with a coalitional game-theory approach. The proposed framework is implemented in two datasets, provided along the 1st International Project Competition for Structural Health Monitoring (IPC-SHM 2020), comprising acceleration and cable-load measurements from two real cable-stayed bridges. The results demonstrate good predictive performance and highlight the potential for seamless adaption of the algorithm to intrinsically different data domains. For the first time, the term "decision trajectories", originating from the field of cognitive sciences, is introduced and applied in the context of SHM. This provides an intuitive and comprehensive illustration of the impact of individual features, along with an elaboration on feature dependencies that drive individual model predictions. Overall, the proposed framework provides an easy-to-train, application-agnostic and interpretable anomaly detector, which can be integrated into the preprocessing part of various SHM and condition-monitoring applications, offering a first screening of the sensor health prior to further analysis.

An active learning method with difficulty learning mechanism for crack detection

  • Shu, Jiangpeng;Li, Jun;Zhang, Jiawei;Zhao, Weijian;Duan, Yuanfeng;Zhang, Zhicheng
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.195-206
    • /
    • 2022
  • Crack detection is essential for inspection of existing structures and crack segmentation based on deep learning is a significant solution. However, datasets are usually one of the key issues. When building a new dataset for deep learning, laborious and time-consuming annotation of a large number of crack images is an obstacle. The aim of this study is to develop an approach that can automatically select a small portion of the most informative crack images from a large pool in order to annotate them, not to label all crack images. An active learning method with difficulty learning mechanism for crack segmentation tasks is proposed. Experiments are carried out on a crack image dataset of a steel box girder, which contains 500 images of 320×320 size for training, 100 for validation, and 190 for testing. In active learning experiments, the 500 images for training are acted as unlabeled image. The acquisition function in our method is compared with traditional acquisition functions, i.e., Query-By-Committee (QBC), Entropy, and Core-set. Further, comparisons are made on four common segmentation networks: U-Net, DeepLabV3, Feature Pyramid Network (FPN), and PSPNet. The results show that when training occurs with 200 (40%) of the most informative crack images that are selected by our method, the four segmentation networks can achieve 92%-95% of the obtained performance when training takes place with 500 (100%) crack images. The acquisition function in our method shows more accurate measurements of informativeness for unlabeled crack images compared to the four traditional acquisition functions at most active learning stages. Our method can select the most informative images for annotation from many unlabeled crack images automatically and accurately. Additionally, the dataset built after selecting 40% of all crack images can support crack segmentation networks that perform more than 92% when all the images are used.

Data anomaly detection for structural health monitoring of bridges using shapelet transform

  • Arul, Monica;Kareem, Ahsan
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.93-103
    • /
    • 2022
  • With the wider availability of sensor technology through easily affordable sensor devices, several Structural Health Monitoring (SHM) systems are deployed to monitor vital civil infrastructure. The continuous monitoring provides valuable information about the health of the structure that can help provide a decision support system for retrofits and other structural modifications. However, when the sensors are exposed to harsh environmental conditions, the data measured by the SHM systems tend to be affected by multiple anomalies caused by faulty or broken sensors. Given a deluge of high-dimensional data collected continuously over time, research into using machine learning methods to detect anomalies are a topic of great interest to the SHM community. This paper contributes to this effort by proposing a relatively new time series representation named "Shapelet Transform" in combination with a Random Forest classifier to autonomously identify anomalies in SHM data. The shapelet transform is a unique time series representation based solely on the shape of the time series data. Considering the individual characteristics unique to every anomaly, the application of this transform yields a new shape-based feature representation that can be combined with any standard machine learning algorithm to detect anomalous data with no manual intervention. For the present study, the anomaly detection framework consists of three steps: identifying unique shapes from anomalous data, using these shapes to transform the SHM data into a local-shape space and training machine learning algorithms on this transformed data to identify anomalies. The efficacy of this method is demonstrated by the identification of anomalies in acceleration data from an SHM system installed on a long-span bridge in China. The results show that multiple data anomalies in SHM data can be automatically detected with high accuracy using the proposed method.

Long-term condition monitoring of cables for in-service cable-stayed bridges using matched vehicle-induced cable tension ratios

  • Peng, Zhen;Li, Jun;Hao, Hong
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.167-179
    • /
    • 2022
  • This article develops a long-term condition assessment method for stay cables in cable stayed bridges using the monitored cable tension forces under operational condition. Based on the concept of influence surface, the matched cable tension ratio of two cables located at the same side (either in the upstream side or downstream side) is theoretically proven to be related to the condition of stay cables and independent of the positions of vehicles on the bridge. A sensor grouping scheme is designed to ensure that reliable damage detection result can be obtained even when sensor fault occurs in the neighbor of the damaged cable. Cable forces measured from an in-service cable-stayed bridge in China are used to demonstrate the accuracy and effectiveness of the proposed method. Damage detection results show that the proposed approach is sensitive to the rupture of wire damage in a specific cable and is robust to environmental effects, measurement noise, sensor fault and different traffic patterns. Using the damage sensitive feature in the proposed approach, the metrics such as accuracy, precision, recall and F1 score, which are used to evaluate the performance of damage detection, are 97.97%, 95.08%, 100% and 97.48%, respectively. These results indicate that the proposed approach can reliably detect the damage in stay cables. In addition, the proposed approach is efficient and promising with applications to the field monitoring of cables in cable-stayed bridges.

Machine Learning Methods to Predict Vehicle Fuel Consumption

  • Ko, Kwangho
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권9호
    • /
    • pp.13-20
    • /
    • 2022
  • 본 연구에서는 주행 차량의 실시간 연료소모량을 예측할 수 있는 머신러닝 기법을 제안하고 그 특성을 분석하였다. 머신러닝 학습을 위해 실도로 주행을 실시하여 주행 속도, 가속도, 도로 구배와 함께 연료소모량을 측정하였다. 특성 데이터로 속도, 가속도, 도로구배를, 타깃으로 연료소모량을 지정하여 다양한 머신러닝 모델을 학습시켰다. 회귀법에 해당하는 K-최근접이웃회귀 및 선형회귀와 함께, 분류법에 해당하는 K-최근접이웃분류, 로지스틱회귀, 결정트리, 랜덤포레스트, 그래디언부스팅을 사용하였다. 실시간 연료소모량에 대한 예측 정확도는 0.5 ~ 0.6 수준으로 전반적으로 낮았고, 회귀법의 경우 분류법보다 정확도가 떨어졌다. 총연료소모량에 대한 예측 오차는 0.2 ~ 2.0% 수준으로 상당히 정확했고, 분류법보다 회귀법의 오차가 더 낮았다. 이는 예측 정확도의 기준으로 결정계수(R2)를 사용했기 때문인데, 이 값이 작을수록 타깃의 평균 부근에 예측치가 좁게 분포하기 때문이다. 따라서 실시간 연료소모량 예측에는 분류법이, 총연료소모량 예측에는 회귀법이 적합하다고 할 수 있다.

Formulation and evaluation a finite element model for free vibration and buckling behaviours of functionally graded porous (FGP) beams

  • Abdelhak Mesbah;Zakaria Belabed;Khaled Amara;Abdelouahed Tounsi;Abdelmoumen A. Bousahla;Fouad Bourada
    • Structural Engineering and Mechanics
    • /
    • 제86권3호
    • /
    • pp.291-309
    • /
    • 2023
  • This paper addresses the finite element modeling of functionally graded porous (FGP) beams for free vibration and buckling behaviour cases. The formulated finite element is based on simple and efficient higher order shear deformation theory. The key feature of this formulation is that it deals with Euler-Bernoulli beam theory with only three unknowns without requiring any shear correction factor. In fact, the presented two-noded beam element has three degrees of freedom per node, and the discrete model guarantees the interelement continuity by using both C0 and C1 continuities for the displacement field and its first derivative shape functions, respectively. The weak form of the governing equations is obtained from the Hamilton principle of FGP beams to generate the elementary stiffness, geometric, and mass matrices. By deploying the isoparametric coordinate system, the derived elementary matrices are computed using the Gauss quadrature rule. To overcome the shear-locking phenomenon, the reduced integration technique is used for the shear strain energy. Furthermore, the effect of porosity distribution patterns on the free vibration and buckling behaviours of porous functionally graded beams in various parameters is investigated. The obtained results extend and improve those predicted previously by alternative existing theories, in which significant parameters such as material distribution, geometrical configuration, boundary conditions, and porosity distributions are considered and discussed in detailed numerical comparisons. Determining the impacts of these parameters on natural frequencies and critical buckling loads play an essential role in the manufacturing process of such materials and their related mechanical modeling in aerospace, nuclear, civil, and other structures.

청크 기반 시계열 음성의 감정 인식 연구 (A Study on Emotion Recognition of Chunk-Based Time Series Speech)

  • 신현삼;홍준기;홍성찬
    • 인터넷정보학회논문지
    • /
    • 제24권2호
    • /
    • pp.11-18
    • /
    • 2023
  • 최근 음성 감정 인식(Speech Emotion Recognition, SER)분야는 음성 특징과 모델링을 활용하여 인식률을 개선하기 위한 많은 연구가 진행되고 있다. 기존 음성 감정 인식의 정확도를 높이기 위한 모델링 연구 이외에도 음성 특징을 다양한 방법으로 활용하는 연구들이 진행되고 있다. 본 논문에서는 음성 감정이 시간 흐름과 연관이 있음을 착안하여 시계열 방식으로 음성파일을 시간 구간별로 분리한다. 파일 분리 이후, 음성 특징인 Mel, Chroma, zero-crossing rate (ZCR), root mean square (RMS), mel-frequency cepastral coefficients (MFCC)를 추출하여서 순차적 데이터 처리에 사용하는 순환형 신경망 모델에 적용하여 음성 데이터에서 감정을 분류하는 모델을 제안한다. 제안한 모델은 librosa를 사용하여 음성 특징들을 모든 파일에서 추출하여, 신경망 모델에 적용하였다. 시뮬레이션은 영어 데이터 셋인 Interactive Emotional Dyadic Motion Capture (IEMOCAP)을 이용하여 recurrent neural network (RNN), long short-term memory (LSTM) and gated recurrent unit(GRU)의 모델들의 성능을 비교 및 분석하였다.

A deep and multiscale network for pavement crack detection based on function-specific modules

  • Guolong Wang;Kelvin C.P. Wang;Allen A. Zhang;Guangwei Yang
    • Smart Structures and Systems
    • /
    • 제32권3호
    • /
    • pp.135-151
    • /
    • 2023
  • Using 3D asphalt pavement surface data, a deep and multiscale network named CrackNet-M is proposed in this paper for pixel-level crack detection for improvements in both accuracy and robustness. The CrackNet-M consists of four function-specific architectural modules: a central branch net (CBN), a crack map enhancement (CME) module, three pooling feature pyramids (PFP), and an output layer. The CBN maintains crack boundaries using no pooling reductions throughout all convolutional layers. The CME applies a pooling layer to enhance potential thin cracks for better continuity, consuming no data loss and attenuation when working jointly with CBN. The PFP modules implement direct down-sampling and pyramidal up-sampling with multiscale contexts specifically for the detection of thick cracks and exclusion of non-crack patterns. Finally, the output layer is optimized with a skip layer supervision technique proposed to further improve the network performance. Compared with traditional supervisions, the skip layer supervision brings about not only significant performance gains with respect to both accuracy and robustness but a faster convergence rate. CrackNet-M was trained on a total of 2,500 pixel-wise annotated 3D pavement images and finely scaled with another 200 images with full considerations on accuracy and efficiency. CrackNet-M can potentially achieve crack detection in real-time with a processing speed of 40 ms/image. The experimental results on 500 testing images demonstrate that CrackNet-M can effectively detect both thick and thin cracks from various pavement surfaces with a high level of Precision (94.28%), Recall (93.89%), and F-measure (94.04%). In addition, the proposed CrackNet-M compares favorably to other well-developed networks with respect to the detection of thin cracks as well as the removal of shoulder drop-offs.

Deep learning-based anomaly detection in acceleration data of long-span cable-stayed bridges

  • Seungjun Lee;Jaebeom Lee;Minsun Kim;Sangmok Lee;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • 제33권2호
    • /
    • pp.93-103
    • /
    • 2024
  • Despite the rapid development of sensors, structural health monitoring (SHM) still faces challenges in monitoring due to the degradation of devices and harsh environmental loads. These challenges can lead to measurement errors, missing data, or outliers, which can affect the accuracy and reliability of SHM systems. To address this problem, this study proposes a classification method that detects anomaly patterns in sensor data. The proposed classification method involves several steps. First, data scaling is conducted to adjust the scale of the raw data, which may have different magnitudes and ranges. This step ensures that the data is on the same scale, facilitating the comparison of data across different sensors. Next, informative features in the time and frequency domains are extracted and used as input for a deep neural network model. The model can effectively detect the most probable anomaly pattern, allowing for the timely identification of potential issues. To demonstrate the effectiveness of the proposed method, it was applied to actual data obtained from a long-span cable-stayed bridge in China. The results of the study have successfully verified the proposed method's applicability to practical SHM systems for civil infrastructures. The method has the potential to significantly enhance the safety and reliability of civil infrastructures by detecting potential issues and anomalies at an early stage.