• Title/Summary/Keyword: Smart Factory systems

Search Result 159, Processing Time 0.022 seconds

Development and Implementation of Smart Manufacturing Big-Data Platform Using Opensource for Failure Prognostics and Diagnosis Technology of Industrial Robot (제조로봇 고장예지진단을 위한 오픈소스기반 스마트 제조 빅데이터 플랫폼 구현)

  • Chun, Seung-Man;Suk, Soo-Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.4
    • /
    • pp.187-195
    • /
    • 2019
  • In the fourth industrial revolution era, various commercial smart platforms for smart system implementation are being developed and serviced. However, since most of the smart platforms have been developed for general purposes, they are difficult to apply / utilize because they cannot satisfy the requirements of real-time data management, data visualization and data storage of smart factory system. In this paper, we implemented an open source based smart manufacturing big data platform that can manage highly efficient / reliable data integration for the diagnosis diagnostic system of manufacturing robots.

Low-weight Secure Encryption Protocol on RFID for Manufactory Automation (공장 자동화를 위한 RFID 경량 암호 프로토콜에 관한 연구)

  • Hwang, Deuk-Young;Kim, Jin-Mook
    • Convergence Security Journal
    • /
    • v.16 no.7
    • /
    • pp.173-180
    • /
    • 2016
  • There has been a growing interest in automation of factories in the country. And, the development in this regard has been actively attempted. In particular, on the basis of the "innovation 3.0 strategy of manufacturing industry", interest in the smart of the manufacturing plant of small and medium-sized enterprises has increased rapidly. As well as policy for building smart plant, technical, seeking a strategic approach. But, in order to introduce such a smart plant or factory automation systems, manufacturing plant security with vulnerability and personal information protection problems, it should always be top priority there. Accordingly, we provide the applicable lightweight secure protocols in RFID communication. It is a wireless communication technology that is most often introduced for factory automation. Our proposed lightweight secure protocol in this study, less the number of calculations in comparison with the existing public key-based and the symmetric key encryption algorithm. And it is fast in compare with the existing protocol. Furthermore, we design that it system can support to low power consumption and small consume the memory size.

Low-cost AGV Lane Detector Design using Bluetooth (블루투스를 이용한 저비용 AGV 차선 검출기 설계)

  • Lee, Jiheon;Park, Jaehyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • A smart factory is a key industrial application introduced by the 4th industrial revolution. The automatic guided vehicle (AGV) is one of the technology realizing smart factory, but the development cost is high due to its early stage of technology. Although developing a low-cost AGV requires a lot of data, it has limited data acquisition capability because of the limited storage and the AGV movement. Hence, we propose a development environment using Bluetooth to collect data and design a lane detector. The proposed lane detector shows a high lane detection ratio regardless of light variation and a shade.

Quality 4.0: Concept, Elements, Level Evaluation and Deployment Direction (품질 4.0: 개념, 요소, 수준 평가와 전개 방향)

  • Seo, Hojin;Byun, Jai-Hyun;Kim, Dohyun
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.4
    • /
    • pp.447-466
    • /
    • 2021
  • Purpose: This article aims 1) to propose Quality 4.0 concept through surveying related literature, 2) to suggest key elements of Quality 4.0 by arranging the elements of Quality 4.0 that appeared in the literature, 3) to determine the levels of Quality 4.0, and 4) to suggest ideas for effective deployment of Quality 4.0. Methods: Eleven papers or documents are reviewed for Quality 4.0 concept; two papers and one document are investigated for key element extraction of Quality 4.0; and smart factory roadmap and industry 4.0 maturity model are studied to determine the levels of Quality 4.0. Results: 1) Quality 4.0 definition is proposed. 2) Three key elements are determined: data acquisition and analytics, connection and integration, and leadership and culture. 3) Six Quality 4.0 levels are determined. 4) Some suggestions are addressed for effective deployment of Quality 4.0. Conclusion: 1) Definition, key elements, levels, and some suggestions on effective deployment of Quality 4.0 are addressed. 2) Specific contents of Quality 4.0 education and training courses should be provided in the future. 3) Two future research directions are proposed.

A Study on Obstacle Avoidance and Autonomous Travelling of Mobile Robot in Manufacturing Precess for Smart Factory (스마트 팩토리를 위한 제조공정내에서 모바일 로봇의 장애물 회피 및 자율주행에 관한 연구)

  • Kim, D.B.;Kim, H.J.;Moon, J.C.;Bae, H.Y;Han, S.H.
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.379-388
    • /
    • 2018
  • In this study, we propose a new approach to impliment autonomous travelling of mobile robot based on obstacle avoidance and voice command. Obstacle Avoidance technology of mobile robpot. It has been used in wide range of different robotics areas to minimize the risk of collisions. Obstacle avoidance of mobile robots are mostly applied in transportation systems such as aircraft traffic control, autonomous cars etc. Collision avoidance is a important requirement in mobile robot systems where they all featured some kind of obstacle detection techniques in order to avoid colliding. In this paper it was illustrated the reliability of voice command and obstacle avoidance for autonomous travelling of mobile robot with two wheels as the purpose of application to the manufacturing process by simulation and experiments.

Smart Sensor Management System Supporting Service Plug-In in MQTT-Based IIoT Applications

  • Lee, Young-Ran;Kim, Sung-Ki
    • Journal of Multimedia Information System
    • /
    • v.9 no.3
    • /
    • pp.209-218
    • /
    • 2022
  • Industrial IoT applications, including smart factories, require two problem-solving to build data monitoring systems required by services from distributed IoT sensors (smart sensors). One is to overcome proprietary protocols, data formats, and hardware differences and to uniquely identify and connect IoT sensors, and the other is to overcome the problem of changing the server-side data storage structure and sensor data transmission format according to the addition or change of service or IoT sensors. The IEEE 1451.4 standard-based or IPMI specification-based smart sensor technology supports the development of plug-and-play sensors that solve the first problem. However, there is a lack of research that requires a second problem-solving, which requires support for the plug-in of IoT sensors into remote services. To propose a solution for the integration of these two problem-solving, we present a IoT sensor platform, a service system architecture, and a service plugin protocol for the MQTT-based IIoT application environment.

Development of Distributed Smart Data Monitoring System for Heterogeneous Manufacturing Machines Operation (이종 공작기계 운용 관리를 위한 분산 스마트 데이터 모니터링 시스템 개발)

  • Lee, Young-woon;Choi, Young-ju;Lee, Jong-Hyeok;Kim, Byung-Gyu;Lee, Seung-Woo;Park, Jong-Kweon
    • Journal of Digital Contents Society
    • /
    • v.18 no.6
    • /
    • pp.1175-1182
    • /
    • 2017
  • Recent trend in the manufacturing industry is focused on the convergence with IoT and Big Data, by emergence of the 4th Industrial Revolution. To realize a smart factory, the proposed system based on MTConnect technology collects and integrates various status information of machines from many production facilities including heterogeneous devices. Also it can distribute the acquisited status of heterogeneous manufacturing machines to the remote devices. As a key technology of a flexible automated production line, the proposed system can provide much possibility to manage important information such as error detection and processing state management in the unmanned automation line.

A Systematic Review on Smart Manufacturing in the Garment Industry

  • Kim, Minsuk;Ahn, Jiseon;Kang, Jihye;Kim, Sungmin
    • Fashion & Textile Research Journal
    • /
    • v.22 no.5
    • /
    • pp.660-675
    • /
    • 2020
  • Since Industry 4.0, there is a growing interest in smart manufacturing across all industries. However, there are few studies on this topic in the garment industry despite the growing interest in implementing smart manufacturing. This paper presents the feasibility and essential considerations for implementing smart manufacturing in the garment industry. A systematic review analysis was conducted. Studies on garment manufacturing and smart manufacturing were searched separately in the Scopus database. Key technologies for each manufacturing were derived by keyword analysis. Studies on key technologies in each manufacturing were selected; in addition, bibliographic analysis and cluster analysis were conducted to understand the progress of technological development in the garment industry. In garment manufacturing, technology studies are rare as well as locally biased. In addition, there are technological gaps compared to other manufacturing. However, smart manufacturing studies are still in their infancy and the direction of garment manufacturing studies are toward smart manufacturing. More studies are needed to apply the key technologies of smart manufacturing to garment manufacturing. In this case, the progress of technology development, the difference in the industrial environment, and the level of implementation should be considered. Human components should be integrated into smart manufacturing systems in a labor-intensive garment manufacturing process.

A Study on Improvement of Indoor Positioning Accuracy Using Diagonal Survey Method (대각측량 방식을 이용한 실내 측위 정확도 개선에 관한 연구)

  • Jeong, Hyun gi;Park, Tae hyun;Kwon, Jang woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.160-172
    • /
    • 2018
  • The method of estimating a position using a GPS has been applied to various fields including a navigation system of an automobile. However, since it is difficult to measure GPS signals indoors, it is difficult to locate specific objects indoors such as a building or factory. To overcome these limitations, this study proposes a system for object location estimation based on Bluetooth5 for the management of materials in factories. The object position estimation system consists of a Bluetooth signal generator, a receiver, and a database server. A signal generator based on Bluetooth Low Energy(BLE) is attached to the material and a receiver is appropriately arranged inside the factory. In this study, we propose "Diagonal Survey Method", a 4 - axis survey algorithm using four receivers to reduce the error of existing trilateration method. The proposed algorithm showed good performance compared to the conventional trilateration and we verified the effectiveness of the proposed system and algorithm by performing the experiment by installing the system in the factory.

A Study on a Framework for Digital Twin Management System applicable to Smart Factory (스마트 팩토리에 적용 가능한 디지털 트윈 관리시스템 프레임워크에 관한 연구)

  • Park, Dongjin;Choi, Myungsoo;Yang, Dongsik
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.9
    • /
    • pp.1-7
    • /
    • 2020
  • In order to implement a smart factory for manufacturing innovation, more digital twins will be developed and applied gradually. In particular, simulation and optimization of digital twins makes it possible to support critical decision-making like a predictive maintenance of the equipment for manufacturing. In terms of a user perspective, this study suggests the conceptual framework of Digital Twin Management System (DTMS) for supporting the analytical and managerial activities for Digital Twins. We integrate the methods and structure of the area like Manufacturing Engineering, Decision Support Systems, and Optimization for developing the DTMS. The framework suggested in this study shows a typical DSS which consists of dialog management system, model management system and data management system. It also includes Analytical Digital Twins and simulations & optimization module. The framework is being applied in one of the most competitive and complex industrial sector. Also this study is meaningful to suggest a new direction of research.