Transactions of the Korean Society of Mechanical Engineers A
/
제41권6호
/
pp.533-541
/
2017
Recently, with the adoption of modern computing and communication technologies, manufacturing systems have become more autonomous and intelligent. Thus, as the number of field devices with smart sensors also increase, the need for an integrated management of such devices becomes essential. This paper proposes a smart encoder architecture that integrates the position sensing function with CANopen connectivity. In addition, an integrated system is proposed to simultaneously control and monitor multiple encoders over the Controller Area Network (CAN) fieldbus network. We evaluated the performance and functionalities of the proposed system by comparative experiments with commercial CANopen smart encoders using a CANopen conformance test.
International journal of advanced smart convergence
/
제12권4호
/
pp.142-146
/
2023
We present a method for generating 3D structures and rendering objects by combining VAE (Variational Autoencoder) and GAN (Generative Adversarial Network). This approach focuses on generating and rendering 3D models with improved quality using residual learning as the learning method for the encoder. We deep stack the encoder layers to accurately reflect the features of the image and apply residual blocks to solve the problems of deep layers to improve the encoder performance. This solves the problems of gradient vanishing and exploding, which are problems when constructing a deep neural network, and creates a 3D model of improved quality. To accurately extract image features, we construct deep layers of the encoder model and apply the residual function to learning to model with more detailed information. The generated model has more detailed voxels for more accurate representation, is rendered by adding materials and lighting, and is finally converted into a mesh model. 3D models have excellent visual quality and accuracy, making them useful in various fields such as virtual reality, game development, and metaverse.
IEIE Transactions on Smart Processing and Computing
/
제5권5호
/
pp.303-309
/
2016
This paper presents a channel-adaptive rate control algorithm for low delay video coding. The main goal of the proposed method is to adaptively use the unknown available channel bandwidth while reducing the end-to-end delay between encoder and decoder. The key idea of the proposed algorithm is for the status of the encoder buffer to indirectly reflect the mismatch between the available channel bandwidth and the generated bitrate. Hence, the proposed method fully utilizes the unknown available channel bandwidth by monitoring the encoder buffer status. Simulation results show that although the target bitrate mismatches the available channel bandwidth, the encoder efficiently adapts the given available bandwidth to improve the peak signal-to-noise ratio.
In this paper, we suggest a new technique for WPC parity-check matrix (H-matrix) generation and a corresponding decoding process. The key idea is to construct WPC H-matrix by using a convolutional encoder. It is easy to have many different coderates from a mother code with convolutional codes. However, it is difficult to have many different coderates with LDPC codes. Constructing LDPC Hmatrix based on a convolutional code can easily bring the advantage of convolutional codes to have different coderates. Moreover, both LDPC and convolutional decoding algorithms can be applied altogether in the decoding part. This process prevents the performance degradation of short-length WPC code.
Purpose: The purpose of this study is the time series analysis for predicting the yield of crops applicable to each farm using environmental variables measured by smart farms cultivating tomato. In addition, it is intended to confirm the influence of environmental variables using a deep learning model that can be explained to some extent. Methods: A time series analysis was performed to predict production using environmental variables measured at 75 smart farms cultivating tomato in two periods. An LSTM-based encoder-decoder model was used for cases of several farms with similar length. In particular, Dual Attention Mechanism was applied to use environmental variables as exogenous variables and to confirm their influence. Results: As a result of the analysis, Dual Attention LSTM with a window size of 12 weeks showed the best predictive power. It was verified that the environmental variables has a similar effect on prediction through wieghtss extracted from the prediction model, and it was also verified that the previous time point has a greater effect than the time point close to the prediction point. Conclusion: It is expected that it will be possible to attempt various crops as a model that can be explained by supplementing the shortcomings of general deep learning model.
This paper presents a novel M-shaped encoder-decoder architecture for skin lesion segmentation, achieving better performance than existing approaches. The proposed architecture utilizes the left and right legs to enable multi-scale feature extraction and is further enhanced by integrating an attention module within the skip connection. The image is partitioned into four distinct patches, facilitating enhanced processing within the encoder-decoder framework. A pivotal aspect of the proposed method is to focus more on critical image features through an attention mechanism, leading to refined segmentation. Experimental results highlight the effectiveness of the proposed approach, demonstrating superior accuracy, precision, and Jaccard Index compared to existing methods
In this study, a neural network method performing both Detection and Classification of diseases and insects in paprika is proposed with Multi-Tasking U-net. Paprika on farms does not have a wide variety of diseases in this study, only two classes such as powdery mildew and mite, which occur relatively frequently are made as the targets. Aiming to this, a U-net is used as a backbone network, and the last layers of the encoder and the decoder of the U-net are utilized for classification and segmentation, respectively. As the result, the encoder of the U-net is shared for both of detection and classification. The training data are composed of 680 normal leaves, 450 mite-damaged leaves, and 370 powdery mildews. The test data are 130 normal leaves, 100 mite-damaged leaves, and 90 powdery mildews. Its test results shows 89% of recognition accuracy.
The general flatbed printer system is composed of a PC and a dedicated S/W, which is inconvenient to use. In the end, there is a need for a technology that can easily and conveniently use various types of printing through simplification, smartization, etc. of a flatbed printer system configuration. That is, there is an increasing demand for multi-dimensional printer capable of printing on various types of materials with one printer and capable of printing various types of products. Therefore, in this paper, we developed a flatbed printer system capable of multi-dimensional printing using Head Encoder/Trigger control. To this end, we developed a flatbed printer that connects the internal module of the flatbed printer with an input type detection sensor and controls all operating states by the head encoder and head trigger signals of the printer through separate main controllers. Through this, the development and diffusion of IoT technology will expand the printer control of the smart environment to the developed form throughout the industry. It is expected to contribute to the development of the 3D printing industry in the future.
IEIE Transactions on Smart Processing and Computing
/
제3권6호
/
pp.353-357
/
2014
This paper, presents an efficient hardware architecture of high performance SVC(Scalable Video Coding). This platform uses dedicated hardware architecture to improve its performance. The architecture was prototyped in Verilog HDL and synthesized using the Synopsys Design Compiler with a 65nm standard cell library. At a clock frequency of 266MHz, This platform contains 2,500,000 logic gates and 750,000 memory gates. The performance of the platform is indicated by 30 frames/s of the SVC encoder Full HD($1920{\times}1080$), HD($1280{\times}720$), and D1($720{\times}480$) at 266MHz.
Park, Jong-Jin;Choi, Gyoo-Seok;Chun, Chang-Hee;Park, In-Ku;Kang, Jeong-Jin
The Journal of the Institute of Internet, Broadcasting and Communication
/
제11권6호
/
pp.207-214
/
2011
In this paper, using Zigbee-based wireless sensor networks and Lego MindStorms NXT robot, a remote monitoring and navigation system for mobile robot has been developed. Mobile robot can estimate its position using encoder values of its motor, but due to the existing friction and shortage of motor power etc., error occurs. To fix this problem and obtain more accurate position of mobile robot, a ultrasound module on wireless sensor networks has been used in this paper. To overcome disadvantages of ultrasound which include straightforwardness and narrow detection coverage, we rotate moving node attached to mobile robot by $360^{\circ}$ to measure each distance from four fixed nodes. Then location of mobile robot is estimated by triangulation using measured distance values. In addition, images are sent via a network using a USB Web camera to smart phone. On smart phones we can see location of robot, and images around places where robot navigates. And remote monitoring and navigation is possible by just clicking points at the map on smart phones.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.