• Title/Summary/Keyword: Smart Bridge Monitoring System

Search Result 123, Processing Time 0.021 seconds

Bridge deflection evaluation using strain and rotation measurements

  • Sousa, Helder;Cavadas, Filipe;Henriques, Abel;Bento, Joao;Figueiras, Joaquim
    • Smart Structures and Systems
    • /
    • v.11 no.4
    • /
    • pp.365-386
    • /
    • 2013
  • Monitoring systems currently applied to concrete bridges include strain gauges, inclinometers, accelerometers and displacement transducers. In general, vertical displacements are one of the parameters that more often need to be assessed because their information reflects the overall response of the bridge span. However, the implementation of systems to continuously and directly observe vertical displacements is known to be difficult. On the other hand, strain gauges and inclinometers are easier to install, but their measurements provide no more than indirect information regarding the bridge deflection. In this context, taking advantage of the information collected through strain gauges and inclinometers, and the processing capabilities of current computers, a procedure to evaluate bridge girder deflections based on polynomial functions is presented. The procedure has been implemented in an existing software system - MENSUSMONITOR -, improving the flexibility in the data handling and enabling faster data processing by means of real time visualization capabilities. Benefiting from these features, a comprehensive analysis aiming at assessing the suitability of polynomial functions as an approximate solution for deflection curves, is presented. The effect of boundary conditions and the influence of the order of the polynomial functions on the accuracy of results are discussed. Some recommendations for further instrumentation plans are provided based on the results of the present analysis. This work is supported throughout by monitoring data collected from a laboratory beam model and two full-scale bridges.

System identification of a cable-stayed bridge using vibration responses measured by a wireless sensor network

  • Kim, Jeong-Tae;Ho, Duc-Duy;Nguyen, Khac-Duy;Hong, Dong-Soo;Shin, Sung Woo;Yun, Chung-Bang;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.533-553
    • /
    • 2013
  • In this paper, system identification of a cable-stayed bridge in Korea, the Hwamyung Bridge, is performed using vibration responses measured by a wireless sensor system. First, an acceleration based-wireless sensor system is employed for the structural health monitoring of the bridge, and wireless sensor nodes are deployed on a deck, a pylon and several selected cables. Second, modal parameters of the bridge are obtained both from measured vibration responses and finite element (FE) analysis. Frequency domain decomposition and stochastic subspace identification methods are used to obtain the modal parameters from the measured vibration responses. The FE model of the bridge is established using commercial FE software package. Third, structural properties of the bridge are updated using a modal sensitivity-based method. The updating work improves the accuracy of the FE model so that structural behaviors of the bridge can be represented better using the updated FE model. Finally, cable forces of the selected cables are also identified and compared with both design and lift-off test values.

A versatile software architecture for civil structure monitoring with wireless sensor networks

  • Flouri, Kallirroi;Saukh, Olga;Sauter, Robert;Jalsan, Khash Erdene;Bischoff, Reinhard;Meyer, Jonas;Feltrin, Glauco
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.209-228
    • /
    • 2012
  • Structural health monitoring with wireless sensor networks has received much attention in recent years due to the ease of sensor installation and low deployment and maintenance costs. However, sensor network technology needs to solve numerous challenges in order to substitute conventional systems: large amounts of data, remote configuration of measurement parameters, on-site calibration of sensors and robust networking functionality for long-term deployments. We present a structural health monitoring network that addresses these challenges and is used in several deployments for monitoring of bridges and buildings. Our system supports a diverse set of sensors, a library of highly optimized processing algorithms and a lightweight solution to support a wide range of network runtime configurations. This allows flexible partitioning of the application between the sensor network and the backend software. We present an analysis of this partitioning and evaluate the performance of our system in three experimental network deployments on civil structures.

Development of Measuring Data System for Reinforced Concrete Beam Using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 R.C보의 계측 시스템 개발)

  • Kwak, Kae-Hwan;Jang, Hwa-Sup;Yang, Dong-Oun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.47-50
    • /
    • 2005
  • Fiber Bragg Grating (FBG) Sensors as advanced measuring system are introduced and actively being applied to establish a smart monitoring system for bridge maintenance. This study develops FBG sensors and suggests a smart monitoring system. As for its first step, to verify the reliability of FBG sensors that developed, a specimen is made FBG sensors and electric sensor are attached. Then, Static test is conducted on the specimen on the specimens to check reliability. In addition, this study estimates the optimum deflection curve that converts strain curve data measured by FBG sensors into deflection.

  • PDF

A drive-by inspection system via vehicle moving force identification

  • OBrien, E.J.;McGetrick, P.J.;Gonzalez, A.
    • Smart Structures and Systems
    • /
    • v.13 no.5
    • /
    • pp.821-848
    • /
    • 2014
  • This paper presents a novel method to carry out monitoring of transport infrastructure such as pavements and bridges through the analysis of vehicle accelerations. An algorithm is developed for the identification of dynamic vehicle-bridge interaction forces using the vehicle response. Moving force identification theory is applied to a vehicle model in order to identify these dynamic forces between the vehicle and the road and/or bridge. A coupled half-car vehicle-bridge interaction model is used in theoretical simulations to test the effectiveness of the approach in identifying the forces. The potential of the method to identify the global bending stiffness of the bridge and to predict the pavement roughness is presented. The method is tested for a range of bridge spans using theoretical simulations and the influences of road roughness and signal noise on the accuracy of the results are investigated.

Application of operating vehicle load to structural health monitoring of bridges

  • Rafiquzzaman, A.K.M.;Yokoyama, Koichi
    • Smart Structures and Systems
    • /
    • v.2 no.3
    • /
    • pp.275-293
    • /
    • 2006
  • For health monitoring purpose usually the structure is instrumented with a large scale and multichannel measurement system. In case of highway bridges, operating vehicle could be utilized to reduce the number of measuring devices. First this paper presents a static damage detection algorithm of using operating vehicle load. The technique has been validated by finite element simulation and simple laboratory test. Next the paper presents an approach of using this technique to field application. Here operating vehicle load data has been used by instrumenting the bridge at single location. This approach gives an upper hand to other sophisticated global damage detection methods since it has the potential of reducing the measuring points and devices. It also avoids the application of artificial loading and interruption of any traffic flow.

Gaussian mixture model for automated tracking of modal parameters of long-span bridge

  • Mao, Jian-Xiao;Wang, Hao;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.243-256
    • /
    • 2019
  • Determination of the most meaningful structural modes and gaining insight into how these modes evolve are important issues for long-term structural health monitoring of the long-span bridges. To address this issue, modal parameters identified throughout the life of the bridge need to be compared and linked with each other, which is the process of mode tracking. The modal frequencies for a long-span bridge are typically closely-spaced, sensitive to the environment (e.g., temperature, wind, traffic, etc.), which makes the automated tracking of modal parameters a difficult process, often requiring human intervention. Machine learning methods are well-suited for uncovering complex underlying relationships between processes and thus have the potential to realize accurate and automated modal tracking. In this study, Gaussian mixture model (GMM), a popular unsupervised machine learning method, is employed to automatically determine and update baseline modal properties from the identified unlabeled modal parameters. On this foundation, a new mode tracking method is proposed for automated mode tracking for long-span bridges. Firstly, a numerical example for a three-degree-of-freedom system is employed to validate the feasibility of using GMM to automatically determine the baseline modal properties. Subsequently, the field monitoring data of a long-span bridge are utilized to illustrate the practical usage of GMM for automated determination of the baseline list. Finally, the continuously monitoring bridge acceleration data during strong typhoon events are employed to validate the reliability of proposed method in tracking the changing modal parameters. Results show that the proposed method can automatically track the modal parameters in disastrous scenarios and provide valuable references for condition assessment of the bridge structure.

An integrated structural health monitoring system for the Xijiang high-speed railway arch bridge

  • He, Xu-hui;Shi, Kang;Wu, Teng
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.611-621
    • /
    • 2018
  • Compared with the highway bridges, the relatively higher requirement on the safety and comfort of vehicle makes the high-speed railway (HSR) bridges need to present enhanced dynamic performance. To this end, installing a health monitor system (HMS) on selected key HSR bridges has been widely applied. Typically, the HSR takes fully enclosed operation model and its skylight time is very short, which means that it is not easy to operate the acquisition devices and download data on site. However, current HMS usually involves manual operations, which makes it inconvenient to be used for the HSR. Hence, a HMS named DASP-MTS (Data Acquisition and Signal Processing - Monitoring Test System) that integrates the internet, cloud computing (CC) and virtual instrument (VI) techniques, is developed in this study. DASP-MTS can realize data acquisition and transmission automatically. Furthermore, the acquired data can be timely shared with experts from various locations to deal with the unexpected events. The system works in a Browser/Server frame so that users at any places can obtain real-time data and assess the health situation without installing any software. The developed integrated HMS has been applied to the Xijiang high-speed railway arch bridge. Preliminary analysis results are presented to demonstrate the efficacy of the DASP-MTS as applied to the HSR bridges. This study will provide a reference to design the HMS for other similar bridges.

Wireless Impedance Sensor with PZT-Interface for Prestress-Loss Monitoring in Prestressed Concrete Girder

  • Nguyen, Khac-Duy;Lee, So-Young;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.6
    • /
    • pp.616-625
    • /
    • 2011
  • Ensuring the designed prestress force is very important for the safety of prestressed concrete bridge. The loss of prestress force in tendon could significantly reduce load carrying capacity of the structure. In this study, an automated prestress-loss monitoring system for prestressed concrete girder using PZT-interface and wireless impedance sensor node is presented. The following approaches are carried out to achieve the objective. Firstly, wireless impedance sensor nodes are designed for automated impedance-based monitoring technique. The sensor node is mounted on the high-performance Imote2 sensor platform to fulfill high operating speed, low power requirement and large storage memory. Secondly, a smart PZT-interface designed for monitoring prestress force is described. A linear regression model is established to predict prestress-loss. Finally, a system of the PZT-interface interacted with the wireless sensor node is evaluated from a lab-scale tendon-anchorage connection of a prestressed concrete girder.

Application of structural health monitoring in civil infrastructure

  • Feng, M.Q.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.469-482
    • /
    • 2009
  • The emerging sensor-based structural health monitoring (SHM) technology has a potential for cost-effective maintenance of aging civil infrastructure systems. The author proposes to integrate continuous and global monitoring using on-structure sensors with targeted local non-destructive evaluation (NDE). Significant technical challenges arise, however, from the lack of cost-effective sensors for monitoring spatially large structures, as well as reliable methods for interpreting sensor data into structural health conditions. This paper reviews recent efforts and advances made in addressing these challenges, with example sensor hardware and health monitoring software developed in the author's research center. The hardware includes a novel fiber optic accelerometer, a vision-based displacement sensor, a distributed strain sensor, and a microwave imaging NDE device. The health monitoring software includes a number of system identification methods such as the neural networks, extended Kalman filter, and nonlinear damping identificaiton based on structural dynamic response measurement. These methods have been experimentally validated through seismic shaking table tests of a realistic bridge model and tested in a number of instrumented bridges and buildings.