• Title/Summary/Keyword: Smart 365 Center

Search Result 3, Processing Time 0.018 seconds

Development of an Integrated Software for Medical Image-Based Quantification and Its Clinical Application in Liver Disease (의료영상 기반 간 질환 정량분석 통합소프트웨어 개발과 간 질환 환자 데이터 임상 적용)

  • Kim, Ji-Eon;Kim, Seung-Jin;No, Si-Hyeong;Lee, Chung Sub;Kim, Tae-Hoon;Jeong, Chang-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.365-367
    • /
    • 2020
  • 현재 의료영상 진단검사는 간 질환의 진단을 위해 실제 임상에서 사용하고 있는 중요한 검사 방법이며 의료영상을 기반으로 한 정량분석 소프트웨어 개발 연구가 활발히 진행되고 있다. 특히, 의료영상을 기반으로 간 질환을 정량화 하는 방법 가운데 간 결절 점수와 간세포 이질성 점수를 이용하여 간질환에 대한 정량적 평가를 진행한 결과 간 결절 점수와 간세포 이질성 점수에 따른 간 질환 중증도의 상관관계가 증명되었으나 많은 문제점이 제기되었다. 의료영상에는 서로 상반되는 의료영상조건들을 가지고 있기 때문에 의료영상조건에 따른 영상처리 기술들이 필요하였으며 간 결절 점수와 간 세포 이질성 점수는 수식에 의한 계산법을 기반으로 산출하기 때문에 수식 결과에 대한 검증 과정이 필요하였다. 따라서, 본 연구는 기존의 문제점을 해결하기 위해 의료영상에 따른 의료영상처리 기술을 자동화 할 수 있도록 개발하였으며 간염, 간질환, 간 경변등 간 질환 중증도에 따른 정량적인 분석을 수행할 뿐만 아니라 분석 결과에 대한 리포트 결과까지 제공함으로써 간 질환을 진단하기 위한 정량적인 진단 지표가 될 수 있는 소프트웨어 기반의 간 질환 진단 기술을 제안하고자 한다.

A Study on Performance Analysis of Companies Adopting and Not Adopting Win-win Smart Factories (상생형 스마트공장 도입기업과 미도입기업의 성과분석에 관한 연구)

  • Jungha Hwang;Taesung Kim
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.1
    • /
    • pp.45-53
    • /
    • 2024
  • A Smart factories are systems that enable quick response to customer demands, reduce defect rates, and maximize productivity. They have evolved from manual labor-intensive processes to automation and now to cyber-physical systems with the help of information and communication technology. However, many small and medium-sized enterprises (SMEs) are still unable to implement even the initial stages of smart factories due to various environmental and economic constraints. Additionally, there is a lack of awareness and understanding of the concept of smart factories. To address this issue, the Cooperation-based Smart Factory Construction Support Project was launched. This project is a differentiated support project that provides customized programs based on the size and level of the company. Research has been conducted to analyze the impact of this project on participating and non-participating companies. The study aims to determine the effectiveness of the support policy and suggest efficient measures for improvement. Furthermore, the research aims to provide direction for future support projects to enhance the manufacturing competitiveness of SMEs. Ultimately, the goal is to improve the overall manufacturing industry and drive innovation.

Mitochondrial energy metabolic transcriptome profiles during cardiac differentiation from mouse and human pluripotent stem cells

  • Cho, Sung Woo;Kim, Hyoung Kyu;Sung, Ji Hee;Kim, Yeseul;Kim, Jae Ho;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.357-365
    • /
    • 2022
  • Simultaneous myofibril and mitochondrial development is crucial for the cardiac differentiation of pluripotent stem cells (PSCs). Specifically, mitochondrial energy metabolism (MEM) development in cardiomyocytes is essential for the beating function. Although previous studies have reported that MEM is correlated with cardiac differentiation, the process and timing of MEM regulation for cardiac differentiation remain poorly understood. Here, we performed transcriptome analysis of cells at specific stages of cardiac differentiation from mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs). We selected MEM genes strongly upregulated at cardiac lineage commitment and in a time-dependent manner during cardiac maturation and identified the protein-protein interaction networks. Notably, MEM proteins were found to interact closely with cardiac maturation-related proteins rather than with cardiac lineage commitment-related proteins. Furthermore, MEM proteins were found to primarily interact with cardiac muscle contractile proteins rather than with cardiac transcription factors. We identified several candidate MEM regulatory genes involved in cardiac lineage commitment (Cck, Bdnf, Fabp4, Cebpα, and Cdkn2a in mESC-derived cells, and CCK and NOS3 in hiPSC-derived cells) and cardiac maturation (Ppargc1α, Pgam2, Cox6a2, and Fabp3 in mESC-derived cells, and PGAM2 and SLC25A4 in hiPSC-derived cells). Therefore, our findings show the importance of MEM in cardiac maturation.