• Title/Summary/Keyword: Small-sized damper

Search Result 11, Processing Time 0.027 seconds

Modeling and Vibration Control of Small-sized Magneto-rheological Damper (소형 MR 댐퍼의 모델링 및 진동제어)

  • Lee, Jong-Woo;Seong, Min-Sang;Woo, Je-Kwan;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.344-349
    • /
    • 2012
  • This paper presents a new small-sized damper featuring magneto-rheological (MR) fluid which can be applied to vibration control system. The proposed MR damper consists of cylinder, piston, a couple of bearings, oil-seals and magnetic circuit which has two coils. In this damper, approximately 5cc of MR fluid is used. The damping force of the MR damper is designed to be followed by linear shear-mode Bingham-plastic model. In order to verify the performance of the MR damper, an experimental apparatus is established. In the experimental test, the damping force of the MR damper is measured with respect to time, displacement and velocity. In addition, the time response of MR damper is measured when 1A of step current is applied. Finally, The proposed small MR damper is applied to vibration control. In this process, a simple 1-DOF system is modeled and controlled using PID controller.

  • PDF

Modeling and Vibration Control of Small-sized Magneto-rheological Damper (소형 MR 댐퍼의 모델링 및 진동제어)

  • Lee, Jong-Woo;Seong, Min-Sang;Woo, Je-Kwan;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1121-1127
    • /
    • 2012
  • This paper presents a new small-sized damper featuring magneto-rheological(MR) fluid which can be applied to vibration control system. The proposed MR damper consists of cylinder, piston, a couple of bearings, oil-seals and magnetic circuit which has two coils. In this damper, approximately 5cc of MR fluid is used. The damping force of the MR damper is designed to be followed by linear shear-mode Bingham-plastic model. In order to verify the performance of the MR damper, an experimental apparatus is established. In the experimental test, the damping force of the MR damper is measured with respect to time, displacement and velocity. In addition, the time response of MR damper is measured when 1A of step current is applied. Finally, the proposed small MR damper is applied to vibration control. In this process, a simple 1-DOF system is modeled and controlled using PID controller.

Performance Evaluation of Small Dampers Using SMG Fluid (SMG 유체를 이용한 소형댐퍼의 성능평가)

  • Heo, Gwang Hee;Jeon, Seung Gon;Seo, Sang Gu;Kim, Dae Hyeok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.211-219
    • /
    • 2019
  • In this study, SMG(Smart Material with Grease) was developed, which was improved the precipitation minute particle in grease during long term standstill. Also, small-sized cylinder damper equipped with an electromagnet in a piston was developed for using a performance evaluation of the damper with SMG and the dynamic load test, and damping force using Power model and Bingham model was derived in order to compare to the result of that of the damper. The data obtained from the dynamic load test were analyzed and plotted, and then a dynamic range was calculated to evaluate the usability of the damper with SMG. The performance of the damper with SMG was compared to the damping forse derived from the Power and Bingham model. The result of this evaluation shown that the usability of SMG damper was demonstrated by this test as a semi-active controlling equipment of small-sized damper.

Control and Response Characteristics of a Continuously Variable ER Damper (연속가변 ER 댐퍼의 제어 및 응답특성)

  • 최승복;최영태;박우철;정재천;서문석;여문수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.164-174
    • /
    • 1996
  • This paper presents control and response characteristics of a continuously variable ER(electrorheological) damper for small-sized vehicles. The ER damper is devised and its governing equation of motion is derived from the bond graph model. The field-dependent yield shear stresses are distilled from experimental investigation on the Bingham property of the ER fluid. The distilled data are incorporated into the governing system model and, on the basis of this model, an appropriate size of the ER damper is manufactured. After evaluating the field-dependent damping performance of the proposed ER damper, the skyhook control algorithm is formulated to achieve desired level of the damping force. The controller is then experimentally implemented and control characteristics of the ER damper are presented in order to demonstrate superior controllability of the damping force. In addition, response characteristics of the damping force with respect to the electric field with fast on-off frequency are provided to show the feasibility of practical application.

  • PDF

Vibration Control of Flexible Structures using ER Fluid Dampers (ER댐퍼를 이용한 유연 구조물의 진동제어)

  • 이재홍;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.243-247
    • /
    • 1996
  • This paper presents a vibration control of a flexible structure using a controllable ER fluid damper. A clamped-clamped flexible structure system supported by two short columns mimicking a small-sized bridge system is considered. An ER fluid damper which is operated in shear mode is designed and attached to the middle of the flexible structure. The governing equation of motion and associated boundary conditions are derived from Hamilton's principle. A sliding mode control is formulated in order to actively suppress the vibration of the structure due to external excitations. Experimental control results are presented in the frequency domain.

  • PDF

Control Strategy for Modifiable Bipedal Walking on Unknown Uneven Terrain

  • Lee, Woong-Ki;Chwa, Dongkyoung;Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1787-1792
    • /
    • 2016
  • Previous walking pattern generation methods could generate walking patterns that allow only straight walking on flat and uneven terrain. They were unable to generate modifiable walking patterns whereby the sagittal and lateral step lengths and walking direction can be changed at every footstep. This paper proposes a novel walking pattern generation method to realize modifiable walking of humanoid robots on unknown uneven terrain. The proposed method employs a walking pattern generator based on the 3-D linear inverted pendulum model (LIPM), which enables a humanoid robot to vary its walking patterns at every footstep. A control strategy for walking on unknown uneven terrain is proposed. Virtual spring-damper (VSD) models are used to compensate for the disturbances that occur between the robot and the terrain when the robot walks on uneven terrain with unknown height. In addition, methods for generating the foot and vertical center of mass (COM) of the 3-D LIPM trajectories are developed to realize stable walking on unknown uneven terrain. The proposed method is implemented on a small-sized humanoid robot platform, DARwIn-OP and its effectiveness is demonstrated experimentally.

Development of Self-centering Viscous Damper System for Seismic Retrofit of Ordinary Concentrically Braced Frame (보통중심가새골조의 내진보강을 위한 자가복원형 점성감쇠기 시스템 개발)

  • Do Yeon Kim;Hyuck Soon Choi;Joohyung Kang;Yongsun Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.70-78
    • /
    • 2023
  • The ordinary concentrically braced frame has an advantage of having simple design procedure. For this reason, it has been widely used for the small-sized frame structures subject to moderate or lower magnitude earthquake, even though its seismic performance against the earthquake load is not much effective compared to that of other frame systems. To enhance seismic performance of the ordinary concentrically braced frame where the bracing has a weakness for compressive behavior under lateral earthquake, seismic retrofitting by viscous damper has been commonly introduced. However, the viscous damper, itself, generally does not have stiffness for restoring the structure to the original position. This may cause residual displacement to the structure. In this paper, a self-centering viscous damper system in which upper and lower beams having flexural rigidity play a role as a nonlinear-elastic spring, restoring the spring-damper system subject to external displacement history to its original location, is developed. The numerical analysis for a simplified frame structure shows how including the developed self-centering viscous damper system leads to an enhanced seismic performance of the frame structure through energy dissipation during earthquake excitation.

Vibrational Characteristics of High-Speed Motors with Ball Bearings and Gas Foil Bearings Supports (볼 베어링 및 가스 포일 베어링으로 지지되는 소형 고속 전동기의 진동 특성)

  • Seo, Jung Hwa;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.114-122
    • /
    • 2019
  • High-speed rotating machinery requires low cost and reliable bearing elements with low friction, stable rotordynamic characteristics, and a simple design. This study experimentally evaluates the effects of bearing-support elements on the vibrational characteristics of a small-sized, high-speed permanent magnetic motor. A series of coast down tests from 100 krpm characterize the vibrational behaviors, rotor displacement, and housing acceleration of motors supported by ball bearings, ball bearings with a metal mesh damper, and gas foil bearings, respectively. Two eddy-current sensors installed in the horizontal and vertical directions measure the displacement of the rotor at its front nut, and a 3-axis accelerometer attached to the motor housing measures the housing acceleration. The test results reveal that synchronous (1X) vibration components most significantly affect the rotor displacement and housing acceleration, independent of the bearing-support elements. The motor supported by the deep-groove ball bearings results in the largest rotor vibrations increasing with speed; this is due to the absence of a damping mechanism. Additionally, the metal mesh damper effectively reduces the rotor displacement, housing acceleration, and sound-pressure level in the high-speed region (i.e., above 40 krpm), thus implying its substantial damping performance when installed on the outer race of the ball bearing. Lastly, the gas foil bearing supported motor yields the smallest rotor displacement, housing acceleration, and lowest sound-pressure level because of its hydrodynamic airborne operation, which does not require rolling elements that may cause mechanical friction and vibrations.

An Evolutionary Optimization Approach for Optimal Hopping of Humanoid Robots

  • Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2420-2426
    • /
    • 2015
  • This paper proposes an evolutionary optimization approach for optimal hopping of humanoid robots. In the proposed approach, the hopping trajectory is generated by a central pattern generator (CPG). The CPG is one of the biologically inspired approaches, and it generates rhythmic signals by using neural oscillators. During the hopping motion, the disturbance caused by the ground reaction forces is compensated for by utilizing the sensory feedback in the CPG. Posture control is essential for a stable hopping motion. A posture controller is utilized to maintain the balance of the humanoid robot while hopping. In addition, a compliance controller using a virtual spring-damper model is applied for stable landing. For optimal hopping, the optimization of the hopping motion is formulated as a minimization problem with equality constraints. To solve this problem, two-phase evolutionary programming is employed. The proposed approach is verified through computer simulations using a simulated model of the small-sized humanoid robot platform DARwIn-OP.

A Study on the Small Size Loudspeaker for Hi-Fi Low Frequency Sound Reproduction (저음재생용 소형 스피커의 개발에 관한 연구)

  • 남경준;이채봉;김천덕
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.8
    • /
    • pp.31-37
    • /
    • 2001
  • Following the recent trends of reducing the size of multimedia devices, we tried for the development of a compact-sized speaker to produce low-frequency sounds efficiently. For this work, equivalent-circuit analysis was used to get fundamental resonant frequency and then the structure of speaker components has been changed appropriately. As a result, an 80mm small-sized speaker was developed. The performance test showed that the resonant frequency of our system is 79 Hz while that of numerical analysis was 81Hz. At a distance of 1m from our speaker, the frequency ranges 80 Hz to 15kHz and the average sound pressure was found to be 84±2 dB. The second (at 400 Hz) and the third (at 100 Hz) high-frequency distortions of our system were 0.5% and 1.8% respectively, which is to be compared with the distortions of 0.9% and 6% in conventional speakers.

  • PDF