• Title/Summary/Keyword: Small-size window

Search Result 104, Processing Time 0.02 seconds

Measurement of sound Insulation of small-size windows (소형 창문의 차음성능 측정에 관한 고찰)

  • Kim, Sang-Ryul;Kang, Hyun-Ju;Kim, Jae-Seung;Kim, Hyun-Sil;Kim, Bong-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.942-945
    • /
    • 2006
  • In order to measure the sound transmission loss(STL) of a test specimen such as windows, which is smaller than the test opening, a special partition is built into the test opening and the specimen is placed in that partition. This paper discusses how the measured STL is changed by the partition when a small-size window of high sound insulation is mounted. Theoretical and experimental investigations are carried out to quantify the effect of the filler wall. The results reveal that the smaller the window size is, the higher sound insulation performance of the filler wall is required in order to measure the accurate STL of the specimen. It is found that the insufficient sound insulation of the filler wall leads to the lower measured value of the window's STL.

  • PDF

A New Adaptive Window Size-based Three Step Search Scheme (적응형 윈도우 크기 기반 NTSS (New Three-Step Search Algorithm) 알고리즘)

  • Yu Jonghoon;Oh Seoung-Jun;Ahn Chang-bum;Park Ho-Chong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.1 s.307
    • /
    • pp.75-84
    • /
    • 2006
  • With considering center-biased characteristic, NTSS(New Three-Step Search Algorithm) can improve the performance of TSS(Three-Step Search Algorithm) which is one of the most popular fast block matching algorithms(BMA) to search a motion vector in a video sequence. Although NTSS has generally better Quality than TSS for a small motion sequence, it is hard to say that NTSS can provide better quality than TSS for a large motion sequence. It even deteriorates the quality to increase a search window size using NTSS. In order to address this drawback, this paper aims to develop a new adaptive window size-based three step search scheme, called AWTSS, which can improve quality at various window sizes in both the small and the large motion video sequences. In this scheme, the search window size is dynamically changed to improve coding efficiency according to the characteristic of motion vectors. AWTSS can improve the video quality more than 0.5dB in case of large motion with keeping the same quality in case of small motion.

Prediction of Heating Energy Saving Rate on the Window Type-Focus on the Apartment House (창호 구성 요소에 따른 난방에너지 절감율 예측에 관한 연구-공동주택을 중심으로)

  • Kim, Kyung-Ah;Moon, Hyeun-Jun;Yu, Ki-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.54-61
    • /
    • 2013
  • This is study on the glazing performance of the apartment house to predict energy saving rate when the early design stage by calculating heating load. there are various factors of the window type in apartment building to save energy such as window's U-value, SC or SHGC, window wall ration, frame factor, sunshade coefficient and so on. In this study, we analyzed the heating load focused on the U-value, SC and window wall ration using variable heating degree days method for a small and middle size units $59m^2$, $84m^2$, respectively. Each cases were calculated heating load of the real models compared to standard model to predict energy saving rate. From those cases it was drew the conclusion that were window's U-value, SC and window wall ration for the small and middle size units to expect 10% energy saving rate at least.

Energy demand analysis according to window size and performance for Korean multi-family buildings

  • Huh, Jung-Ho;Mun, Sun-Hye
    • Architectural research
    • /
    • v.15 no.4
    • /
    • pp.201-206
    • /
    • 2013
  • Special attention is required for the design of windows due to their high thermal vulnerability. This paper examines the problems that might arise in the application of the u-value, by reflecting the changes in the u-value of the window, depending on the window-to-wall ratio obtained in an energy demand analysis. Research indicates that the u-value of a window increases with an increase in the difference between the u-values of the frames and the glass. Relative to the changes in the u-value of the windows, the energy demand varied from 1.3% to 9.3%. Windows with a g-value of 0.3 or 0.5 displayed a higher energy demand than windows with a g-value of 0.7. Therefore, when the difference between the performance of the glass and the frame is significant, especially when the g-value is small, a modified heat transmission coefficient should be applied to the window size during the evaluation of the building energy demand.

Numerical investigation of glass windows under near-field blast

  • Chiara Bedon;Damijan Markovic;Vasilis Karlos;Martin Larcher
    • Coupled systems mechanics
    • /
    • v.12 no.2
    • /
    • pp.167-181
    • /
    • 2023
  • The determination of the blast protection level and the corresponding minimum load-bearing capacity for a laminated glass (LG) window is of crucial importance for safety and security design purposes. In this paper, the focus is given to the window response under near-field blast loading, i.e., where relatively small explosives would be activated close to the target, representative of attack scenarios using small commercial drones. In general, the assessment of the load-bearing capacity of a window is based on complex and expensive experiments, which can be conducted for a small number of configurations. On the other hand, nowadays, validated numerical simulations tools based on the Finite Element Method (FEM) are available to partially substitute the physical tests for the assessment of the performance of various LG systems, especially for the far-field blast loading. However, very little literature is available on the LG window performance under near-field blast loads, which differs from far-field situations in two points: i) the duration of the load is very short, since the blast wavelength tends to increase with the distance and ii) the load distribution is not uniform over the window surface, as opposed to the almost plane wave configuration for far-field configurations. Therefore, the current study focuses on the performance assessment and structural behaviour of LG windows under near-field blasts. Typical behavioural trends are investigated, by taking into account possible relevant damage mechanisms in the LG window components, while size effects for target LG windows are also addressed under a multitude of blast loading configurations.

Effect of the size of the bony access window and the collagen barrier over the window in sinus floor elevation: a preclinical investigation in a rabbit sinus model

  • Sim, Jeong-Eun;Kim, Sangyup;Hong, Ji-Youn;Shin, Seung-Il;Chung, Jong-Hyuk;Lim, Hyun-Chang
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.4
    • /
    • pp.325-337
    • /
    • 2022
  • Purpose: The aim of this study was to investigate the effect of (1) the size of the bony access window and (2) collagen membrane coverage over the window in sinus floor elevation in a rabbit sinus model. Methods: Small bony access windows (SW; ø 2.8 mm) were made in 6 rabbits and large windows (LW; ø 6 mm) in 6 other rabbits. Both sinuses in each rabbit were allocated to groups with or without coverage of a collagen membrane (CM) on the window, resulting in 4 groups: SW, LW, SW+CM, and LW+CM. After 4 weeks of healing, micro-computed tomographic, histologic, and histomorphometric analyses were performed. Results: Bony healing in the window area was incomplete in all groups, but most bone graft particles were well confined in the augmented cavity. Histologically, the pattern of new bone formation was similar in all groups. Histomorphometrically, the percentage of newly formed bone was greater in the groups with CM than in the groups without CM, and in the groups with SW than in the groups with LW (12.92%±6.40% in the SW+CM group, 4.21%±7.73% in the SW group, 10.45%±4.81% in the LW+CM group, 11.77%±3.83% in the LW group). The above differences were not statistically significant (P>0.05). Conclusions: The combination of a small bony access window and the use of a collagen membrane over the window favored new bone formation compared to other groups, but this result should be further investigated due to the limitations of the present animal model.

An experimental study for the evaluation of airborne sound insulation performance of the small window (소형 창문의 차음 성능 평가에 관한 실험적 고찰)

  • Choi, Dool;Moon, Soon-Sung;Goo, Hee-Mo;Kim, Hang;Park, Hyeon Ku
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.1-1
    • /
    • 2014
  • Side scuttle in the shipboard windows is used in a smaller size in order to prevent damage to the glass. This shipboard windows should have high sound insulation performance (More than $R_w$ 53 dB) according to norsok standards. However, side scuttle having a small size and high sound insulation material is difficult to measure exact result without a suitable filler wall. In this study, the test was conducted according to the number of changes in the small window. As a result, before starting the test should be conducted to the selection of the suitable filler wall or secure a specimen area.

  • PDF

RTT based TCP Design and Implementation for USN (USN을 위한 RTT 기반 TCP 설계 및 구현)

  • Yi, Hyun-Chul;Choi, Joon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.774-779
    • /
    • 2012
  • We design and implement a RTT (Round Trip Time) based TCP (Transmission Control Protocol) for USN (Ubiquitous Sensor Network). We adopt a basic update algorithm for window size from FAST TCP that uses the queuing delay at link as the congestion measure. The designed TCP estimates the queuing delay at link from the measured RTT in the network layer, and updates the window size based on the estimated queuing delay. The designed TCP allows to utilize the full capacity of USN links and avoids the waste of the given link capacity that is common without the flow control in the transport layer. The experiment results show that the window size of the sender converges within a small range of variations without any packet loss, and verify the stability and performance of the designed TCP.

Analysis of the Optimal Window Size of Hampel Filter for Calibration of Real-time Water Level in Agricultural Reservoirs (농업용저수지의 실시간 수위 보정을 위한 Hampel Filter의 최적 Window Size 분석)

  • Joo, Dong-Hyuk;Na, Ra;Kim, Ha-Young;Choi, Gyu-Hoon;Kwon, Jae-Hwan;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.3
    • /
    • pp.9-24
    • /
    • 2022
  • Currently, a vast amount of hydrologic data is accumulated in real-time through automatic water level measuring instruments in agricultural reservoirs. At the same time, false and missing data points are also increasing. The applicability and reliability of quality control of hydrological data must be secured for efficient agricultural water management through calculation of water supply and disaster management. Considering the characteristics of irregularities in hydrological data caused by irrigation water usage and rainfall pattern, the Korea Rural Community Corporation is currently applying the Hampel filter as a water level data quality management method. This method uses window size as a key parameter, and if window size is large, distortion of data may occur and if window size is small, many outliers are not removed which reduces the reliability of the corrected data. Thus, selection of the optimal window size for individual reservoir is required. To ensure reliability, we compared and analyzed the RMSE (Root Mean Square Error) and NSE (Nash-Sutcliffe model efficiency coefficient) of the corrected data and the daily water level of the RIMS (Rural Infrastructure Management System) data, and the automatic outlier detection standards used by the Ministry of Environment. To select the optimal window size, we used the classification performance evaluation index of the error matrix and the rainfall data of the irrigation period, showing the optimal values at 3 h. The efficient reservoir automatic calibration technique can reduce manpower and time required for manual calibration, and is expected to improve the reliability of water level data and the value of water resources.

Analytical Modelling and Heuristic Algorithm for Object Transfer Latency in the Internet of Things (사물인터넷에서 객체전송지연을 계산하기 위한 수리적 모델링 및 휴리스틱 알고리즘의 개발)

  • Lee, Yong-Jin
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.3
    • /
    • pp.1-6
    • /
    • 2020
  • This paper aims to integrate the previous models about mean object transfer latency in one framework and analyze the result through the computational experience. The analytical object transfer latency model assumes the multiple packet losses and the Internet of Things(IoT) environment including multi-hop wireless network, where fast re-transmission is not possible due to small window. The model also considers the initial congestion window size and the multiple packet loss in one congestion window. Performance evaluation shows that the lower and upper bounds of the mean object transfer latency are almost the same when both transfer object size and packet loss rate are small. However, as packet loss rate increases, the size of the initial congestion window and the round-trip time affect the upper and lower bounds of the mean object transfer latency.