• Title/Summary/Keyword: Small-scale wind power

Search Result 84, Processing Time 0.032 seconds

Characteristics Analysis is of Permanent-Magnet Type Wind Generator with Variable Load (부하가변에 따른 영구자석형 풍력발전기의 운전특성 해석)

  • Hwang, Don-Ha;Kang, Do-Hyun;Kim, Yong-Joo;Choi, Kyeong-Ho;Bae, Sung-Woo;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.121-123
    • /
    • 2002
  • This paper presents the finite-element (FE) analysis results of a permanent-magnet (PM) generator for wind-power applications under different operating conditions. Finite-element method is applied to analyze generator performance at no-load and load with variable resistance and inductance. The results of FE analysis show that proposed PM generator is a useful solution for small-scale wind-turbine systems.

  • PDF

A Control Method of Distributed Generation System Which is Connected to Power Distribution System : Without LDC Operation (배전계통에서의 분산전원 도입운용 관리방법 : LDC 운전을 하지 않을 경우)

  • Jung, Won-Jae;Kim, Tae-Eung;Kim, Jae-Eon
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.231-233
    • /
    • 2001
  • Nowadays, small scale DGS(Distributed Generation System), as a wind power generation or photovoltaic generation, becomes to be introduced into the power distribution system. But in that case, it is difficult to properly maintain the terminal voltage of low voltage customers. So, it is necessary to determine the permissible operation limit of the introduced DGS for proper voltage in distribution system. In this paper computes permissible operation limit of DGS when the DGS is connected to power distribution system using fixed tap(without LDC operation). For this simulation, KEPCO distribution system is used.

  • PDF

Analysis of Economic Feasibility of New & Renewable Energies ($\cdot$재생에너지 원별 경제성 분석 - 태양광, 풍력, 소수력 발전을 중심으로 -)

  • Kim Zin-Oh;Kim Jung-Wan;Boo Kyung-Jin
    • New & Renewable Energy
    • /
    • v.1 no.1 s.1
    • /
    • pp.79-86
    • /
    • 2005
  • This study conducted an analysis of economic feasibility with unit generating costs calculated based on scenarios of capacity factors, discount rates, government supporting rates, installation costs. However, It Is clear that few new and renewable energies can meet the tariffs [government purchasing prices] set by the government in light of the current market reality. Without the government support, solar PV is not economically feasible at the tariff of \716.40/kWh. in the case of wind Power, the current tariff of \107.66/kWh is not enough to make it competitive except for a mid- and large-scale wind farm The analysis showed that even small hydro is not economically acceptable at the current tariff of \73.69/kWh.

  • PDF

Effective Algorithm in Steady-State Analysis for Variable-Speed and Constant-Speed Wind Turbine Coupled Three-Phase Self-Excited Induction Generator

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.139-146
    • /
    • 2003
  • In this paper, the steady-state operating performance analysis for the three-phase squirrel cage rotor self-excited induction generator (SEIG) driven by a variable-speed prime mover (VSPM) in addition to a constant-speed prime mover (CSPM) is presented on the basis of an effective algorithm based on its frequency-domain equivalent circuit. The operating characteristics of the three-phase SEIG coupled by a VSPM and/or a CSPM are evaluated on line processing under the condition of the electrical passive load parameters variations with simple and efficient computation processing procedure in unregulated voltage control loop scheme. A three-phase SEIG prototype setup with a VSPM as well as a CSPM is implemented for the small-scale clean renewable and alternative energy utilizations. The experimental operating characteristic results are illustrated and give good agreements with the simulation ones.

Analytical solution for scale-dependent static stability analysis of temperature-dependent nanobeams subjected to uniform temperature distributions

  • Ebrahimi, Farzad;Fardshad, Ramin Ebrahimi
    • Wind and Structures
    • /
    • v.26 no.4
    • /
    • pp.205-214
    • /
    • 2018
  • In this paper, the thermo-mechanical buckling characteristics of functionally graded (FG) size-dependent Timoshenko nanobeams subjected to an in-plane thermal loading are investigated by presenting a Navier type solution for the first time. Material properties of FG nanobeam are supposed to vary continuously along the thickness according to the power-law form and the material properties are assumed to be temperature-dependent. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal governing equations are derived based on Timoshenko beam theory through Hamilton's principle and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate critical buckling temperature results of the FG nanobeams as compared to some cases in the literature. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as material distribution profile, small scale effects and aspect ratio on the critical buckling temperature of the FG nanobeams in detail. It is explicitly shown that the thermal buckling of a FG nanobeams is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.

A Study on Permissible Operation Limit of Distributed Generation System in Distribution System (배전계통에서 분산전원 운전가능 범위에 대한 연구)

  • Jung, Won-Jae;Kim, Tae-Eung;Kim, Jae-Eon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.19-21
    • /
    • 2001
  • Nowadays, small scale DGS(Distributed Generation System), as a wind power generation or photovoltaic generation, becomes to be introduced into the power distribution system. But in that case it is difficult to properly maintain the terminal voltage of low voltage customers by using only LDC(Line Drop Compensator). So, it is necessary to determine the permissible operation limit of the introduced DGS for proper voltage in distribution system. In this paper clarifies the relationship between LDC voltage regulation principle and real, reactive power of DGS, and examines the permissible operation limit of the introduced DGS in distribution system which the voltage is controlled by LDC.

  • PDF

The study on a high efficiency PV tracking system (고효율 태양광 위치 추적 장치에 관한 연구)

  • Lee, Sang-Hun;Lee, Dong-Hee;Park, Sung-Jun;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.86-88
    • /
    • 2007
  • In solar power system, the height and azimuth of the sun are important parameters which control generated power magnitude. The tracking method that controls the daily generation magnitude according to latitude and longitude using the two axles is often used in the existing sunlight tracking system today. In this two-axle PV track control system, the self-load is concentrated on one FRAME. It is influenced of the regular load, snow load and the wind load, etc. It is difficult to set up the system in the conventional building. This research is a development about the small-scale economy track device of independent load-dispersing solar generation system. The position tracking algorithm is through the new coordinates transformation calculating the height and azimuth of the sun.

  • PDF

Energy harvesting using an aerodynamic blade element at resonant frequency with air excitation

  • Bolat, Fevzi C.;Sivrioglu, Selim
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.379-390
    • /
    • 2019
  • In this research, we propose an energy harvesting structure with a flexible blade element vibrating at its first mode to maximize the power output of the piezoelectric material. For this purpose, a piezoelectric patch was attached on the blade element used in a small-scale wind turbine, and air load was applied with a suitable angle of attack in the stall zone. The aerodynamic load created by air excitation vibrates the blade element in its first natural frequency and maximizes the voltage output of the piezoelectric patch. The variation of power outputs with respect to electrical resistance, air speed, and extra mass is experimentally investigated for various cases. An analytical model is constituted using a single-mode blade element with piezoelectric patch dynamics, and the power outputs of the obtained model are compared with experimental results.

A Novel Variable-Speed Renewable-Energy Generation System of Induction Generator and PWM Converter for Small-Scale Hybrid Power Applications

  • Ahmed, Tarek;Nishida, Katsumi;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1339-1342
    • /
    • 2005
  • This paper presents a simple AC-DC power conditioner for a squirell-cage induction generator(IG) operating under variable shaft speeds. The necessary reactive power for the IG system is supplied by means of a capacitor bank and a voltage-source PWM converter. Using a capacitor bank to transfer the reactive power to the IG under the rated speed and no-load conditions starts the IG operation and reduces the PWM power converter size. A simple control compensating for changes in the electrical loads as well as the variation in speed was developed to regulate the voltages of the IG system by controlling the rotor flux through its reactive and active currents control implementation. This proposed power conditioning scheme can be used efficiently as a wind power generation system where the output voltage of the IG is maintained constant voltage despite the variable frequency and the DC bus voltage of the PWM converter can be used for either DC applications such as battery charging or AC power applications with 60/50 Hz by connecting a stand alone inverter. The experimental and simulated operating performance results of a 5 kW IG scheme at various speeds and leads are presented.

  • PDF

A Study on New PV Tracking System Including Load Dispersion

  • Lee, Sang-Hun;Song, Hyun-Jig;Park, Chan-Gyu;Song, Sung-Geon
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.472-480
    • /
    • 2014
  • The In solar power system, the height and azimuth of the sun are important parameters which control generated power magnitude. The tracking method that controls the daily generation magnitude according to latitude and longitude using the two axles is often used in the existing sunlight tracking system today. In this two-axle PV track control system, the self-load is concentrated on one FRAME. It is influenced of the regular load, snow load and the wind load, etc. It is difficult to set up the system in the conventional building. This research is a development about the small-scale economy track device of independent load-dispersing solar generation system. The position tracking algorithm is through new coordinates transformation calculating the height and azimuth of the sun.