• Title/Summary/Keyword: Small-scale simulation

Search Result 485, Processing Time 0.022 seconds

Simulation and Experimental Study of A TLP Type Floating Wind Turbine with Spoke Platform

  • Kim, Hyuncheol;Kim, Imgyu;Kim, Yong Yook;Youn, DongHyup;Han, Soonhung
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.179-191
    • /
    • 2016
  • As the demand for renewable energy has increased following the worldwide agreement to act against global climate change and disaster, large-scale floating offshore wind systems have become a more viable solution. However, the cost of the whole system is still too high for practical realization. To make the cost of a floating wind system be more economical, a new concept of tension leg platform (TLP) type ocean floating wind system has been developed. To verify the performance of a 5-MW TLP type ocean floating wind power system designed by the Korea Advanced Institute of Science and Technology, the FAST simulation developed by the National Renewable Energy Laboratory is used. Further, 1/50 scale model tests have been carried out in the ocean engineering tank of the Research Institute of Medium and Small Shipbuilding, Korea. This paper compares the simulation and ocean engineering tank test results on motion prediction and tension assessment of the TLP anchor.

Applying to simulation analysis for predicting the combustion performance of Large scale fire tests (실대화재시험의 연소성능 예측을 위한 시뮬레이션 적용)

  • Kim, Woon-Hyung;Park, Kye-Won;Jeong, Jae-Gun;Im, Hong-Soon
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.86-92
    • /
    • 2008
  • On this study, modeling works using Cone tools simulation method were made for the prediction of real fire test results such as small to large scale fire tests including ISO 5660-1, EN 13823 and ISO 13784-1. For those simulation prediction, three real fire tests were performed in advance. In addition, Real data from ISO 5660-1 test were applied to this simulation modeling. Finally, the comparative analysis between Real fire tests and Simulation results were made out. Also, the Classifying evaluation by EURO Class using EN 13501-1 were taken off.

  • PDF

A Study on the Structure of Turbulent Flow Fields According to the Operating Loads of Three-Dimensional Small-Size Axial Fan by Large Eddy Simulation (대규모와 모사에 의한 3차원 소형축류홴의 운전부하에 따른 난류유동장 구조에 대한 연구)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.80-85
    • /
    • 2015
  • The unsteady-state, incompressible and three-dimensional large eddy simulation(LES) was carried out to analyze the structure of turbulent flow fields according to the operating loads of three-dimensional small-size axial fan(SSAF). LES shows the best prediction performance in comparison with any other Reynolds averaged Navier-Stokes(RANS) method because static pressure coefficients analysed by LES show a little bit larger than measurements including all flow coefficients. Also, it can be known that the wake of SSAF is divided into from axial flow to radial flow before and behind stall region according to the increase of static pressure through LES analysis.

Large Eddy Simulation on the Vorticity Characteristics of Three-Dimensional Small-Size Axial Fan with Different Operating Points (운전점에 따른 3차원 소형축류홴의 와도 특성에 대한 대규모 와 모사)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.64-70
    • /
    • 2016
  • The unsteady-state, incompressible and three-dimensional large-eddy simulation(LES) was carried out to evaluate the vorticity distribution of a small-size axial fan(SSAF). The X-component vorticity profiles developed around blade tips turn from axial to radial, and diminish the density of distribution according to the increase of static pressure. Otherwise, the Z-component vorticity profiles evenly develop at the region larger than the half radial distance of blade at the operating points of A and B, partly at the trailing-edge region of blade and radially over bellmouth according to the increase of static pressure.

Large Eddy Simulation on the Drag and Static Pressure Acting on the Blade Surface of Three-Dimensional Small-Size Axial Fan with Different Operating Loads (운전부하에 따른 3차원 소형축류홴 날개표면에 작용하는 정압과 항력에 대한 대규모와 모사)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.57-63
    • /
    • 2017
  • The large-eddy simulation(LES) was carried out to evaluate the drag and static pressure acting on the blade surface of a small-size axial fan(SSAF) under the condition of unsteady-state, incompressible fluid and three-dimensional coordination. The axial component of drag coefficient increases with the increase of operating load, but the radial components have negligible sizes regardless of operating loads. Otherwise, the static pressures acting on the blade surfaces of SSAF show different distributions around the operating point of D equivalent to the stall. Also, with the increase of operating load, the static pressures acting on the pressure and suction surfaces of blade concentrate at the tips and leading-edges as a whole.

Characteristization of Spray Combustion and Turbulent Flame Structures in a Typical Diesel Engine Condition (디젤 엔진 운전 조건에서 분무 연소 과정과 난류 화염 구조 특성에 대한 해석)

  • Lee, Young-J.;Huh, Kang-Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.3
    • /
    • pp.29-36
    • /
    • 2009
  • Simulation is performed to analyze the characteristics of turbulent spray combustion in a diesel engine condition. An extended Conditional Moment Closure (CMC) model is employed to resolve coupling between chemistry and turbulence. Relevant time and length scales and dimensionless numbers are estimated at the tip and the mid spray region during spray development and combustion. The liquid volume fractions are small enough to support validity of droplets assumed as point sources in two-phase flow. The mean scalar dissipation rates (SDR) are lower than the extinction limit to show flame stability throughout the combustion period. The Kolmogorov scales remain relatively constant, while the integral scales increase with decay of turbulence. The chemical time scale decreases abruptly to a small value as ignition occurs with subsequent heat release. The Da and Ka show opposite trends due to variation in the chemical time scale. More work is in progress to identify the spray combustion regimes.

  • PDF

Electret-based microgenerators under sinusoidal excitations: an analytical modeling

  • Nguyen, Cuong C.;Ranasinghe, Damith C.;Al-Sarawi, Said F.
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.335-347
    • /
    • 2018
  • The fast-growing number of mobile and wearable applications has driven several innovations in small-scale electret-based energy harvesting due to the compatibility with standard microfabrication processes and the ability to generate electrical energy from ambient vibrations. However, the current modeling methods used to design these small scale transducers or microgenerators are applicable only for constant-speed rotations and small sinusoidal translations, while in practice, large amplitude sinusoidal vibrations can happen. Therefore, in this paper, we formulate an analytical model for electret-based microgenerators under general sinusoidal excitations. The proposed model is validated using finite element modeling combined with numerical simulation approaches presented in the literature. The new model demonstrates a good agreement in estimating both the output voltage and power of the microgenerator. This new model provides useful insights into the microgenerator operating mechanism and design trade-offs, and therefore, can be utilized in the design and performance optimization of these small structures.

Simulation of Atmospheric Pollutants Concentration in the Urban Scale (도시 규모의 대기오염 농도 예측)

  • 이상득;정일현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.2
    • /
    • pp.137-145
    • /
    • 1997
  • To predict the effects of air pollutant in the coastal region, we have developed the air pollutant model, the reaction model and the deposition of NO, $NO_2, and O_3$. And the numerical model of air pollutant concentration employed the nested technique to calculate with the higher resolution for the area. The nested technique used two grid systems, one for the large scale calculating region with the coarse mesh grid (CMG) and the other for the small scale region with the fine grid (FMG). In other to prove the validity of the simulation model the calculations were conducted for the present situation. The results of them reasonably agree with the observed data and proved the validity of the model.

  • PDF

A Study on the Generation and Application of Photometric Data for Lighting Simulation (조명 시뮬레이션을 위한 측광데이터의 생성과 적용)

  • Hong, Sung-De
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.6 no.2
    • /
    • pp.25-30
    • /
    • 2006
  • The purpose of this study was to investigate how student felt the strengths and shortness of presentation methods for formation of interior spaces. For this study, the process of the interior architecture design class was divided into three stages: the programming. the design development, and the design completion. In the design development stage, students used presentation methods: hand sketch, scale model, computer modeling, and virtual realty. The strengths of hand sketch was that quick expression. Models provided three-dimensional feelings. Computer modelling provide realistic color and texture. Virtual reality provided three-dimensional immersion and real scale. It is effective that students collect brain storm images using quick hand sketch in the beginning of design development stage. After that, they compose interior spaces in study models with small scale. Watching the models, they design details of spaces by using hand sketch and computer modelling. Using virtual reality, they can check the scale and circulation. Finally, they complete computer modelling by texture mapping and check the final design in virtual reality.

  • PDF

A Method to Accelerate Convergence of Hessenberg process for Small Signal Stability Analysis of Large Scale Power Systems (대규모 전력계통의 미소신호 안정도 해석을 위한 Hessenberg Process의 수렴특성 가속화 방법)

  • Song, Sung-Geun;Nam, Ha-Kon;Shim, Kwan-Shik;Moon, Chae-Ju;Kim, Yong-Gu
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.871-874
    • /
    • 1998
  • It is most important in small signal stability analysis of large scale power systems to compute only the dominant eigenvalues selectively with numerical stability and efficiency. Hessenberg process is numerically very stable and identifies the largest eigenvalues in magnitude. Hence, transformed system matrix must be used with the process. Inverse transformation with complex shift provides high selectivity centered on the shift, but does not possess the desired property of computing the dominant mode first. Thus, advantage of high selectivity of the transformation can be fully utilized only when the complex shift is given close to the dominant eigenvalues. In this paper, complex shift is determined by Fourier transforming the results of dynamic simulation with PTI's PSS/E transient simulation program. The convergence in Hessenberg process is accelerated using the iterative scheme. Overall, a numerically stable and very efficient small signal stability program is obtained. The stability and efficiency of the program has been validated against New England 10-machines 39-bus system and KEPCO system.

  • PDF