• Title/Summary/Keyword: Small-scale simulation

Search Result 485, Processing Time 0.025 seconds

Analysis of Evacuation Time According to Variation of Evacuation Stairs' Width in Large-Scale Goshiwons (대규모 고시원의 피난계단 폭의 변화에 따른 피난소요시간 분석)

  • Oh, Su-cheol;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.641-651
    • /
    • 2022
  • This research compares and analyzes evacuation time depending on the change in stair width in case of fire at Goshiwons. For this, a simulation has been conducted based on possible evacuation time according to the calculation method for the number of people admittable to a specific target for fire fighting equipped with accommodation. Currently, Gosiwon, which is classified as an accommodation facility (a total floor area of 500 m2 or more), uses blind spots prescribed by the Fire Services Act, Building Act, and Parking Act to build a high-rise building on a small area of land, and most Gosiwon is transformed into a modified accommodation. This is in line with the owner's operating profit, so it is expected to show a continuous increase. Securing the golden time of Gosiwon evacuation time is the last bastion of Gosiwon residents who belong to the economically disadvantaged in our society, and we hope this study will serve as a starting point for discussions on revising related laws and regulations to establish a social safety net As a result of the evacuation simulation analysis, the evacuation time was the least when the width of the group and the evacuation stairs were expanded to 200cm, and the evacuation time of the existing building was reduced by up to 166.3 seconds by comparing 648.4 seconds and scenario 6. This analysis can be meaningful, in that the width of the evacuation stairs revision of related laws and regulations for the safety of multiplex available premises.

Modal and Stress Analysis of Spur Gear in DC Motor Gearhead using Finite Element Model

  • Pratama, Pandu Sandi;Supeno, Destiani;Jeong, Seongwon;Park, Cunsook;Woo, Jihee;Lee, Eunsook;Yoon, Woojin;Choi, Wonsik
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.17-17
    • /
    • 2017
  • In electric agricultural machine the gearhead is needed to convert the high speed low torque rotation motion generated by DC motor to lower speed high torque motion used by the vehicle. The gearhead consist of several spur gears works as reduction gears. Spur gear have straight tooth and are parallel to the axis of the wheel. Spur gears are the most easily visualized gears that transmit motion between two parallel shafts and easy to produce. The modeling and simulation of spur gears in DC motor gearhead is important to predict the actual motion behavior. A pair of spur gear tooth in action is generally subjected to two types of cyclic stress: contact stress and bending stress including bending fatigue. The stress may not attain their maximum values at the same point of contact fatigue. These types of failure can be minimized by analysis of the problem during the design stage and creating proper tooth surface profile with proper manufacturing methods. To improve its life expectation in this study modal and stress analysis of gearhead is simulated using ansys work bench software based on finite element method (FEM). The modal analysis was done to understand gearhead deformation behaviour when vibration occurs. FEM static stress analysis is also simulated on gearhead to simulate the gear teeth bending stress and contact stress behavior. This methodology serves as an approach for gearhead design evaluation, and the study of gear stress behavior in DC motor gearhead which is needed in the small workshop scale industries.

  • PDF

Process of Using BIM for Small-Scale Construction Projects - Focusing on the Steel-frame Work - (소규모 건축공사의 BIM 정보 활용을 위한 프로세스 제안 - 철골공사 중심으로 -)

  • Kim, Jin-Kwang;Yoo, Moo-Young;Ham, Nam-Hyuk;Kim, Jae-Jun;Choi, Chang-Shik
    • Journal of KIBIM
    • /
    • v.8 no.2
    • /
    • pp.41-50
    • /
    • 2018
  • The current study focused on the utilization of building information modeling (BIM) data in steel-frame structures, which help to reduce project durations because they employ prefabricated structural members that are assembled on-site. In addition, a business process model was proposed using BIM data collected during the preconstruction, structural steel fabrication, and on-site construction phases of an actual steel-frame project. The ultimate expectation is that BIM data support at each phase, as well as the increased understanding among project participants, will result in an increase in project management productivity. The results from the current study are summarized as follows: To implement a BIM capable of application to steel-frame projects and data utilization, existing theories were studied to develop the construction project steps, both generally into the preconstruction (A1), steel fabrication (A2), and on-site construction phases, (A3) and specifically into 19 BIM-applicable phases. Based on the derived BIM-applicable phases, the model elements of the BIM object were identified, and the shortcomings of existing steel-frame projects were ameliorated, resulting in an improved data flow model. Moreover, for the proposed BIM data flow to progress efficiently, the BIM specialist needs to be well-acquainted with the phase-specific three-dimensional (3D) model output, and the infrastructure to construct an error-free 3D model must be provided. Based on the actual construction example, the BIM data utilized steel-frame projects - via production reports, clash checks, two-dimensional (2D) drawings, four-dimensional (4D) simulations, and 3D scanning - to make cooperation and communication among participants easier.

A Composite Trend Test with Symptom Occurrence and Severity Symptom Scores (증상 발현과 증상 심각성을 병합한 추세검정법)

  • Choi, Se-Mi;Yang, Soo;Song, Hae-Hiang
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1045-1054
    • /
    • 2011
  • During clinical trials a researcher is frequently able to observe a disease symptom in a subject as well as a severity score for those who experienced a symptom after a fixed length of treatment. The traditional method to evaluate a decreasing trend in proportion, when there is an intrinsic order in the treatment groups (for example control and two or more treatment groups) is a Cochran-Armitage test, while the method to evaluate a decreasing trend in continuous non-normal data is a Jonckheere-Tersptra test. The Cochran-Armitage test emphasizes the dichotomous data of symptom occurrence and the Jonckheere-Tersptra test emphasizes the continuous non-normal data of severity symptom scores. In this paper we propose new test statistics that consider the combined evidence from a symptom occurrence and disease severity score. We illustrate these methods with example data of schizophrenic inpatients that demonstrated antipsychotic-drug induced constipation. A small-scale simulation is conducted to compare the new trend tests with other trend tests.

Fabrication and Small scale Short Circuit Tests of Hybrid Fault Current Limiter Employing Asymmetric Non-Inductive Coil and Fast Switch (이종초전도 코일을 이용한 하이브리드형 한류기의 제작 및 단락실험)

  • Jang, Jae-Young;Kim, Young-Jae;Na, Jin-Bae;Choi, Suk-Jin;Lee, Woo-Seung;Lee, Chang-Young;Park, Dong-Keun;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.1
    • /
    • pp.41-45
    • /
    • 2011
  • Hybrid fault current limiters (FCL) have been researched at Yonsei University. The hybrid FCL has advantages such as having a rapid response to a sudden fault situation and a fast recovery time from a quench. It consists of an asymmetric HTS coil, a switching module, and a bypass reactor. The asymmetric HTS coil is wound with two different types of HTS wires in an opposite direction so that it has nearly zero inductance at the superconducting state. When the quench occurs at the fault state, a strong magnetic field is generated from the asymmetric coil because of different quench characteristics of two HTS wires, and then a repulsive force is induced in the switching module. The force opens the switch and the fault current is pushed into the bypass reactor. In this research, we analyzed the cause of the repulsive force and confirmed, experimentally and computationally, that the magnitude of a repulsive force is varied by changing the gap distance between the asymmetric coil and the switching module. By using the FEM simulation, we calculated the repulsive force with respect to the gap distance and verified that the effect of the gap distance. Then, short circuit test was carried out to confirm the correct operation of the fast switch.

A Study of the Characteristics of Input Boundary Conditions for the Prediction of Urban Air Flow based on Fluid Dynamics (유체 역학 기반 도시 기류장 예측을 위한 입력 경계 바람장 특성 연구)

  • Lee, Tae-Jin;Lee, Soon-Hwan;Lee, Hwawoon
    • Journal of Environmental Science International
    • /
    • v.25 no.7
    • /
    • pp.1017-1028
    • /
    • 2016
  • Wind information is one of the major inputs for the prediction of urban air flow using computational fluid dynamic (CFD) models. Therefore, the numerical characteristics of the wind data formed at their mother domains should be clarified to predict the urban air flow more precisely. In this study, the formation characteristics of the wind data in the Seoul region were used as the inlet wind information for a CFD based simulation and were analyzed using numerical weather prediction models for weather research and forecasting (WRF). Because air flow over the central part of the Korean peninsula is often controlled not only by synoptic scale westerly winds but also by the westerly sea breeze induced from the Yellow Sea, the westerly wind often dominates the entire Seoul region. Although simulations of wind speed and air temperature gave results that were slightly high and low, respectively, their temporal variation patterns agreed well with the observations. In the analysis of the vertical cross section, the variation of wind speed along the western boundary of Seoul is simpler in a large domain with the highest horizontal resolution as compared to a small domain with the same resolution. A strong convergence of the sea breeze due to precise topography leads to the simplification of the wind pattern. The same tendency was shown in the average vertical profiles of the wind speed. The difference in the simulated wind pattern of two different domains is greater during the night than in the daytime because of atmospheric stability and topographically induced mesoscale forcing.

Remediation of Copper-Contaminated Soil using Low Molecular Weight Organic Acid Flushing Technique (저분자량 유기산 세척을 이용한 오염토양으로부터의 Cu제거에 관한 연구)

  • 이기철;강순기;공성호
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.1
    • /
    • pp.30-36
    • /
    • 1998
  • For successful soil flushing process selection of appropriate flushing reagents is essential. Futhermore, obtaining operating parameters for site remediation application through various bench-scale tests is also important. In this research a series of organic acids (acetic, citric, oxalic, and succinic acids) were tested for flushing capability. Copper-contaminated natural soil was used as a test medium, and flushing experiments were performed with batch system. All the organic acids used did not provide effective flushing conditions at concentration of 1 mM. At the acid concentration of 50 and 100 mM copper was removed efficiently although 50 and 100 mM did not show any significant differences in removal efficiencies. Citric acid and oxalic acid removed copper more efficiently than the others, and especially, citric acid showed over 87% of removal efficiency of copper at near neutral pH of 5 to 7. Speciation of extracted copper using GEOCHEM simulation showed majority of extracted copper existed as complexed with organic acids and only small portion of organic acids were complexed with copper indicating promising application of soil flushing with organic acid to heavy metal-contaminated site remediation.

  • PDF

AGV-induced floor micro-vibration assessment in LCD factories by using a regressional modified Kanai-Tajimi moving force model

  • Lee, C.L.;Su, R.K.L.;Wang, Y.P.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.4
    • /
    • pp.543-568
    • /
    • 2013
  • This study explores the floor micro-vibrations induced by the automated guided vehicles (AGVs) in liquid-crystal-display (LCD) factories. The relationships between moving loads and both the vehicle weights and speeds were constructed by a modified Kanai-Tajimi (MKT) power spectral density (PSD) function whose best-fitting parameters were obtained through a regression analysis by using experimental acceleration responses of a small-scale three-span continuous beam model obtained in the laboratory. The AGV induced floor micro-vibrations under various AGV weights and speeds were then assessed by the proposed regressional MKT model. Simulation results indicate that the maximum floor micro-vibrations of the target LCD factory fall within the VC-B and VC-C levels when AGV moves at a lower speed of 1.0 m/s, while they may exceed the acceptable VC-B level when AGV moves at a higher speed of 1.5 m/s. The simulated floor micro-vibration levels are comparable to those of typical LCD factories induced by AGVs moving normally at a speed between 1.0 m/s and 2.0 m/s. Therefore, the numerical algorithm that integrates a simplified sub-structural multi-span continuous beam model and a proposed regressional MKT moving force model can provide a satisfactory prediction of AGV-induced floor micro-vibrations in LCD factories, if proper parameters of the MKT moving force model are adopted.

Vibration behaviors of a damaged bridge under moving vehicular loads

  • Yin, Xinfeng;Liu, Yang;Kong, Bo
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.199-216
    • /
    • 2016
  • A large number of bridges were built several decades ago, and most of which have gradually suffered serious deteriorations or damage due to the increasing traffic loads, environmental effects, and inadequate maintenance. However, very few studies were conducted to investigate the vibration behaviors of a damaged bridge under moving vehicles. In this paper, the vibration behaviors of such vehicle-bridge system are investigated in details, in which the effects of the concrete cracks and bridge surface roughness are particularly considered. Specifically, two vehicle models are introduced, i.e., a simplified four degree-of-freedoms (DOFs) vehicle model and a more complex seven DOFs vehicle model, respectively. The bridges are modeled in two types, including a single-span uniform beam and a full scale reinforced concrete high-pier bridge, respectively. The crack zone in the reinforced concrete bridge is considered by a damage function. The bridge and vehicle coupled equations are established by combining the equations of motion of both the bridge and vehicles using the displacement relationship and interaction force relationship at the contact points between the tires and bridge. The numerical simulations and verifications show that the proposed modeling method can rationally simulate the vibration behaviors of the damaged bridge under moving vehicles; the effect of cracks on the impact factors is very small and can be neglected for the bridge with none roughness, however, the effect of cracks on the impact factors is very significant and cannot be neglected for the bridge with roughness.

Simulations of Runoff using Rice Straw Mats and Soil Amendments (볏짚거적과 토양개량제를 이용한 강우유출 모의)

  • Won, Chul-Hee;Shin, Min-Hwan;Choi, Yong-Hun;Shin, Jae-Young;Park, Woon-Ji;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.95-102
    • /
    • 2012
  • The objective of this research was to experimentally test the effect of rice straw mats on the reduction of runoff, sediment discharge and turbidity under a laboratory scale. We used the small runoff plots of 1 m ${\times}$ 1 m ${\times}$ 0.65 m ($L{\times}W{\times}H$) in size filled with loamy sand. Experimental treatments were bare (control), rice straw mat cover of straw mats + PAM + Gypsum (SPG), rice straw mats + Chaff + PAM + Gypsum (SCPG) and rice straw mats + Sawdust + PAM + Gypsum (SSPG); slope of 10 % or 20 %; and rainfall intensity of 30 mm/hr. Runoff volume and rate of covered plots were significantly lower than those of control plot. Average runoff rate of covered plots, slope of 10 % and 20 %, decreased 85.6 % and 72 % in respectively. Sediment reduction ratio was more than 99 % regardless of slope. The differences runoff and sediment discharge among different cover materials were not significant. It was also shown that even if runoff reduction by surface cover were low, sediment discharge reduction could be very significant and contribute to improve the water quality of streams in sloping agricultural regions. It was concluded that the use of straw mat and soil amendments (PAM and Gypsum) on sloping agricultural fields could reduce soil erosion and muddy runoff significantly and help improve the water quality and aquatic ecosystem in receiving waters. But mixing effect of PAM and Gypsum was minimal.