• Title/Summary/Keyword: Small-scale simulation

Search Result 485, Processing Time 0.03 seconds

TFN model application for hourly flood prediction of small river (소규모 하천의 시간단위 홍수예측을 위한 TFN 모형 적용성 검토)

  • Sung, Ji Youn;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.2
    • /
    • pp.165-174
    • /
    • 2018
  • The model using time series data can be considered as a flood forecasting model of a small river due to its efficiency for model development and the advantage of rapid simulation for securing predicted time when reliable data are obtained. Transfer Function Noise (TFN) model has been applied hourly flood forecast in Italy, and UK since 1970s, while it has mainly been used for long-term simulations in daily or monthly basis in Korea. Recently, accumulating hydrological data with good quality have made it possible to simulate hourly flood prediction. The purpose of this study is to assess the TFN model applicability that can reflect exogenous variables by combining dynamic system and error term to reduce prediction error for tributary rivers. TFN model with hourly data had better results than result from Storage Function Model (SFM), according to the flood events. And it is expected to expand to similar sized streams in the future.

WRF Numerical Study on the Convergent Cloud Band and Its Neighbouring Convective Clouds (겨울철 동해상의 대상수렴운과 그 주위의 대류운에 관한 WRF 수치모의 연구)

  • Kim, Yu-Jin;Lee, Jae Gyoo
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.49-68
    • /
    • 2014
  • This study analyzed atmospheric conditions for the convergent cloud band (Cu-Cb line) in developing stage and its neighbouring convections formed over the East Sea on 1 February 2012, by using synoptic, satellites data, and WRF numerical simulation output of high resolution. In both satellite images and the WRF numerical simulation outputs, the Cu-Cb line that stretched out toward northwest-southeast was shown in the East Sea, and cloud lines of the L mode were aligned in accordance with the prevailing surface wind direction. However, those of the T mode were aligned in the direction of NE-SW, which was nearly perpendicular direction to the surface winds. The directions of the wind shear vectors connecting top winds and bottom winds of the moist layers of the L mode and the T mode were identical with those of the cloud lines of L mode and T mode, respectively. From the WRF simulation convection circulations with a convergence in the lower layer of atmosphere and a divergence above 1.5 km ASL (Above Sea Level) were identified in the Cu-Cb line. A series of small sized vortexes (maximum vortex: $320{\times}10^{-5}s^{-1}$) of meso-${\gamma}$-scale formed by convergences was found along the Cu-Cb lines, suggesting that Cu-Cb lines, consisting of numerous convective clouds, were closely associated with a series of the small vortexes. There was an absolute unstable layer (${\partial}{\theta}/{\partial}z$ < 0) between sfc and ~0.3 km ASL, and a stable layer (${\partial}{\theta}/{\partial}z$ > 0) above ~2 km ASL over the Cu-Cb line and cloud zones. Not only convectively unstable layers (${\partial}{\theta}_e/{\partial}z$ < 0) but also neutral layers (${\partial}{\theta}_e/{\partial}z{\approx}=0$) in the lower atmosphere (sfc~1.5 km ASL) were scattered around over the cloud zones. Particularly, for the Cu-Cb line there were convectively unstable layers in the surface layer, and neutral layers (${\partial}{\theta}_e/{\partial}z{\approx}=0$) between 0.2 and ~1.5 km ASL over near the center of the Cu-Cb line, and the neutralization of unstable layers came from the release of convective instability.

Effects of Traffic Signals with a Countdown Indicator: Driver's Reaction Time and Subjective Satisfaction in Driving Simulation

  • Chang, Joonho;Jung, Kihyo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.459-466
    • /
    • 2017
  • Objective: This study examined two traffic signals with a countdown indicator in terms of driver's reaction time and subjective satisfaction score and their performance was compared with a standard traffic signal in driving simulation. Background: Dilemma zone is created when a traffic light changes at intersections. It often pushes drivers to rush in urgent and premature decision making whether to go or stop and thus induces unnecessary mental load among drivers, which may lead to sudden conflicts with following vehicles at intersections. Method: Forty college students (male: 20, female: 20) participated in this driving simulation study. Three traffic signals were employed: (1) standard traffic signal; (2) countdown-separated signal; and (3) countdown-overlaid signal. The countdown-separated and countdown-overlaid signals were designed to inform drivers of the remaining time of a green light before tuning to an amber light. Reaction times (sec) and satisfaction scores (7-point scale) for the two signals with a countdown indicator were compared with those for the standard traffic signal. Results: Reaction times of the countdown-separated (0.49 sec) and countdown-overlaid (0.43 sec) signals were significantly shorter than that of the standard signal (0.67 sec). Satisfaction scores of the countdown-separated (5.3 point) and countdown-overlaid (5.6 point) signals were greater than that of the standard signal (3.8 point). Lastly, the countdown-overlaid signal showed better performance than the countdown-separated signal, but their differences in reaction time (0.06 sec) and satisfaction score (0.3 point) were small. Conclusion: Traffic signals with a countdown indicator can improve drivers' reaction time and satisfaction score than the standard traffic signal. Application: Traffic signals with a countdown indicator will be useful for reducing the length of dilemma zone at intersections, by allowing drivers to predict the remaining time of a green light.

A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory

  • Mokhtar, Youcef;Heireche, Houari;Bousahla, Abdelmoumen Anis;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.397-405
    • /
    • 2018
  • In this paper, a novel simple shear deformation theory for buckling analysis of single layer graphene sheet is formulated using the nonlocal differential constitutive relations of Eringen. The present theory involves only three unknown and three governing equation as in the classical plate theory, but it is capable of accurately capturing shear deformation effects, instead of five as in the well-known first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required. Nonlocal elasticity theory is employed to investigate effects of small scale on buckling of the rectangular nano-plate. The equations of motion of the nonlocal theories are derived and solved via Navier's procedure for all edges simply supported boundary conditions. The results are verified with the known results in the literature. The influences played by Effects of nonlocal parameter, length, thickness of the graphene sheets and shear deformation effect on the critical buckling load are studied. Verification studies show that the proposed theory is not only accurate and simple in solving the buckling nanoplates, but also comparable with the other higher-order shear deformation theories which contain more number of unknowns.

Variable-Speed Prime Mover Driving Three-Phase Self-Excited Induction Generator with Static VAR Compensator Voltage Regulation-Part H : Simulation and Experimental Results-

  • Ahmed, Tarek;Nagai, Schinichro;Soshin, Koji;Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.10-15
    • /
    • 2003
  • This paper presents the digital computer performance evaluations of the three-phase self-excited induction generator (SEIG) driven by the variable speed prime mover such as the wind turbine using the nodal admittance approach steady-state frequency domain analysis with the experimental results. The three-phase SEIG setup is implemented for small-scale rural renewable energy utilizations. The experimental performance results give a good agreement with those ones obtained from the digital computer simulation. Furthermore, a feedback closed-loop voltage regulation of the three-phase SEIG as a power conditioner which is driven by a variable speed prime mover employing the static VAR compensator (SVC) circuit composed of the thyristor phase controlled reactor (TCR) and the thyristor switched capacitor(TSC) is designed and considered herein for the wind-turbine driven the power conditioner. To validate the effectiveness of the SVC-based voltage regulator of the terminal voltage of the three-phase SEIG, an inductive load parameter disturbances in stand-alone are applied and characterized in this paper. In the stand-alone power utilization system, the terminal voltage response and thyristor triggering angle response of the TCR are plotted graphically. The simulation and the experimental results prove the effectiveness and validity of the proposed SVC which is controlled by the Pl controller in terms of fast response and high performances of the three-phase SEIG driven directly by the rural renewable energy utilization like a variable-speed prime mover.

Numerical Simulation of the Coalescence of Air Bubbles in Turbulent Shear Flow: 2. Model Application (난류전단 흐름에서의 기포응집에 관한 수치모의: 2. 모형의 적용)

  • Jun, Kyung Soo;Jain, Subhash C.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1365-1373
    • /
    • 1994
  • A Monte-Carlo simulation model, developed to predict size distribution of air bubbles in turbulent shear flow, is applied to a laboratory-scale problem. Sensitivity to various numerical and physical parameters of the model is analyzed. Practical applicability of the model is explored through comparisons of results with experimental measurements. Bubble size increases with air-water discharge ratio and friction factor. Bubble size decreases with increasing mean flow velocity, but the total bubble surface area in the aeration region remains fairly constant. The effect on bubble size distribution of the longitudinal length increment in the simulation model is negligible. A larger radial length increment yields more small and large bubbles and fewer in between. Bubble size distribution is significantly affected by its initial distribution and the location of air injection. Collision efficiency is introduced to explain the discrepancy between collisions with and without coalescence.

  • PDF

Modeling and Validation of 3DOF Dynamics of Maglev Vehicle Considering Guideway (궤도 선형을 고려한 자기부상 열차의 3자유도 동역학 모델 수립 및 검증)

  • Park, Hyeon-cheol;Noh, Myounggyu;Kang, Heung-Sik;Han, Hyung-Suk;Kim, Chang-Hyun;Park, Young-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.41-46
    • /
    • 2017
  • Magnetically levitated (Maglev) vehicles maintain a constant air gap between guideway and car bogie, and thereby achieves non-contact riding. Since the straightness and the flatness of the guideway directly affect the stability of levitation as well as the ride comfort, it is necessary to monitor the status of the guideway and to alert the train operators to any abnormal conditions. In order to develop a signal processing algorithm that extracts guideway irregularities from sensor data, virtual testing using a simulation model would be convenient for analyzing the exact effects of any input as long as the model describes the actual system accurately. Simulation model can also be used as an estimation model. In this paper, we develop a state-space dynamic model of a maglev vehicle system, running on the guideway that contains jumps. This model contains not only the dynamics of the vehicle, but also the descriptions of the power amplifier, the anti-aliasing filter and the sampling delay. A test rig is built for the validation of the model. The test rig consists of a small-scale maglev vehicle, tracks with artificial jumps, and various sensors measuring displacements, accelerations, and coil currents. The experimental data matches well with those from the simulation model, indicating the validity of the model.

Simulation for the Evaluation of Reforming Parameter Values of the Natural Gas Steam Reforming Process for a Small Scale Hydrogen-Fueling Station (소규모 수소 충전소용 천연가스 수증기 개질공정의 수치모사 및 공정 변수 값의 산정)

  • Lee, Deuk-Ki;Koo, Kee-Young;Seo, Dong-Joo;Seo, Yu-Taek;Roh, Hyun-Seog;Yoon, Wang-Lai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.12-25
    • /
    • 2007
  • Numerical simulation of the natural gas steam reforming process for on-site hydrogen production in a $H_2$ fueling station was conducted on the basis of process material and heat balances. The effects of reforming parameters on the process efficiency of hydrogen production were investigated, and set-point values of each of the parameters to minimize the sizes of unit process equipments and to secure a stable operability of the reforming process were suggested. S/C ratio of the reforming reactants was found to be a crucial parameter in the reforming process mostly governing both the hydrogen production efficiency and the stable operability of the process. The operation of the process was regarded to be stable if the feed water(WR) as a reforming reactant could evaporate completely to dry steam through HRSG. The optimum S/C ratio was 3.0 where the process efficiency of hydrogen production was maximized and the stable operability of the process was secured. The optimum feed rates of natural gas(NGR) and WR as reforming reactants and natural gas(NGB) as a burner fuel were also determined for the hydrogen production rate of $27\;Nm^3/h$.

TITAN2D Simulations of Pyroclastic Flows from Small Scale Eruption at Mt. Baekdusan (백두산에서 소규모 분화로 발생 가능한 화쇄류에 대한 TITAN2D 시뮬레이션 연구)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun;Kim, Sunkyeong;Chang, Cheolwoo;Cho, Eunil;Yang, Innsook;Kim, Yunjeong;Kim, Sanghyun;Lee, Kilha;Kim, Seongwook;Macedonio, Giovanni
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.615-625
    • /
    • 2013
  • Many eruptions of Mt. Baekdusan volcano have been recorded in the historical literatures, and there were unrest precursors in 2002. Based on the geological survey results, it has been recognized that Mt. Baekdusan's Plinian eruptions had caused ashfall, followed by the occurrence of pyroclastic flows, which were caused by the collapse of eruption column. Therefore, we simulated the range of the impacts of pyroclastic flows, which were caused by small eruptions from a specific crater. Based on the simulation results, it can be interpreted that, when the pyroclastic flows are caused by the eruption column collapse from an eruption with less than VEI 3, the impacts will range from the outer rim of the caldera to the mountain slope 7 km at the maximum distance. Furthermore, it is interpreted that, when the eruption column occurs by the crater located inside the caldera, most will be deposited inside the caldera and what overflows will be deposited thickly mostly in the north valley, the upper stream region of Erdaobaihe.

Analysis of Flood Reduction in Downstream Urban Areas for the Storage in Apartment Complex (하류 도심지 침수저감 분석을 통한 공동주택 단지의 우수저류조 계획)

  • Jae-Do Choi;Hyoung-Chul Lim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.698-709
    • /
    • 2023
  • Purpose: In this paper, we would like to analyze the growth rate of existing urban immersion in the downstream during large-scale urban development and the degree of reduction in existing urban immersion in the downstream when small excellent storage facilities are planned in apartment complexes. Method: A large-scale sewage model was built using the SWMM model of the U.S. Environmental Protection Agency, and the impact of flooding in existing downtown areas downstream was analyzed through simulation. The built model included the development zone, the existing downtown area downstream, and the entire river basin that discharges rainwater. Result: As a result of calculating and simulating the minimum excellent reservoir capacity for each apartment block in the study target area, it was found that the immersion of 4,893㎥ based on one hour, 25,815㎥ based on two hours, and 55,528㎥ based on three hours in the downstream urban area. Conclusion: As in this study, large-scale flooding simulation considering the existing downtown area in the downstream shows a significant increase in flooding in the downstream, and if excellent reservoir capacity is planned for each apartment block before development and the construction of excellent reservoirs is recommended.