• Title/Summary/Keyword: Small-scale Wind Turbine

Search Result 62, Processing Time 0.031 seconds

Autonomous Micro-grid Design for Supplying Electricity in Carbon-Free Island

  • Hwang, Woo-Hyun;Kim, Sang-Kyu;Lee, Jung-Ho;Chae, Woo-Kyu;Lee, Je-Ho;Lee, Hyun-Jun;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1112-1118
    • /
    • 2014
  • In island and backcountry areas, electrical power is usually supplied by diesel generators. It is difficult for small scale diesel generators to have an economy of scale owing to the usage of fossil fuels to produce electricity. Also, there is a problem of carbon dioxide emissions that brings some environmental pollution to the entire region of the area. For solving those, this paper proposes a design method of autonomous micro-grid to minimize the fossil fuels of diesel generator, which is composed of diesel generator, wind turbine, battery energy storage system and photovoltaic generation system. The proposed method was verified through computer simulation and micro-grid operation system.

A Study on Electromagnetic Structural Design of AFPM Generator for Urban Wind Turbine (도시형 풍력발전기용 AFPM 발전기의 전자기적 구조설계에 관한 연구)

  • Cho, Jun-Seok;Choi, Se-Kwon;Kim, Ju-Yong;Jung, Tae-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.830_831
    • /
    • 2009
  • Wind power system attracts most interest because of high-energy efficiency with environment-friendly. Small scale wind power applications requires a cost effective and mechanically simple generator in order to be a reliable energy source. The use of direct driven generators, instead of geared machines, reduces the number of drive components, which offers the opportunity to reduce costs and increases system reliability and efficiency. This paper presents the development of a coreless axial-flux permanent magnet(AFPM) generator for a urban wind power system. It is analyzed by electromagnetic simulation program Maxwell 3D

  • PDF

Comparative Study on Soil-Structure Interaction Models for Modal Characteristics of Wind Turbine Structure (풍력 구조물의 진동 특성 분석을 위한 지반-구조물 상호작용 모델의 비교 연구)

  • Kim, Jeongsoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.245-253
    • /
    • 2020
  • In this study, natural frequencies are compared using several pile-soil interaction (PSI) models to evaluate the effects of each model on resonance safety checks for a monopile type of wind turbine structure. Base spring, distributed spring, and three-dimensional brick-shell models represented the PSIs in the finite element model. To analyze the effects of the PSI models on a natural frequency, after a stiffness matrix calculation and Winkler-based beam model for base spring and distributed spring models were presented, respectively; natural frequencies from these models were investigated for monopiles with different geometries and soil properties. These results were compared with those from the brick-shell model. The results show that differences in the first natural frequency of the monopiles from each model are small when the small diameter of monopile penetrates hard soil and rock, while the distributed spring model can over-estimate the natural frequency for large monopiles installed in weak soil. Thus, an appropriate PSI model for natural frequency analyses should be adopted by considering soil conditions and structure scale.

An Implementation of Real-time Measurement and Assessment System for Power Quality Characteristics of Grid Connected Wind Turbines (계통연계 풍력발전기의 전력품질 평가를 위한 IEC 61400-21 표준 실시간 계측 장치 구현)

  • Lee, Jong-Joo;Kim, Dong-Joon;Moon, Young-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1560-1565
    • /
    • 2010
  • The renewable resource are getting more attentions with increased concerns on the depletion of fossil fuels and several environmental issues like emission problem. Wind power is a representative option among several renewable sources and the generation capacity using wind power is being increased. However, the wind generation is so volatile on its output characteristic, so it is required to assess the grid impact of wind power generation by measuring the fluctuation effect more precisely. This paper proposes the method for measuring the generation output according to IEC 61400-21(Measurement and assessment of power quality characteristics of grid connected wind turbines) to assess the power quality of wind turbine generation. In addition, it shows an application case to a small-scale wind power generator. In the case study, it suggests a structure design of the proposed measurement instrument both on hardware and software aspects, which is composed of a remote monitoring & data analysis program and an FPGA based real-time signal processing device.

Characteristics Analysis is of Permanent-Magnet Type Wind Generator with Variable Load (부하가변에 따른 영구자석형 풍력발전기의 운전특성 해석)

  • Hwang, Don-Ha;Kang, Do-Hyun;Kim, Yong-Joo;Choi, Kyeong-Ho;Bae, Sung-Woo;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.121-123
    • /
    • 2002
  • This paper presents the finite-element (FE) analysis results of a permanent-magnet (PM) generator for wind-power applications under different operating conditions. Finite-element method is applied to analyze generator performance at no-load and load with variable resistance and inductance. The results of FE analysis show that proposed PM generator is a useful solution for small-scale wind-turbine systems.

  • PDF

The Development of Hybrid Power System using small Wind and Solar Energy (소형 풍력과 태양 에너지를 이용한 하이브리드 발전시스템 개발)

  • Kim, Min;Lee, Dong Heon;Jeong, Jae-Hoon;Park, Won-Hyeon;Byun, Gi-Sik;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.250-251
    • /
    • 2015
  • The situation requires a global alternative energy resources due to the lack of rapid consumption of fossil fuel and nuclear fuel that occurs in nature. There are a number of alternative energy research and development in the world today. Of which there is an existing wind power generation system has been developed into a large-scale systematic trend of small wind power systems have created a wind power generation system using a simple principle. Existing small wind turbine system is a situation that is in many places a deterioration odor problems and maintenance of power generation efficiency because it came to be developed systematically. In this paper, we developed a hybrid power system that can develop the solar energy at the same time as the increase in the small wind power generation efficiency and the system to develop that can efficiently maintain the hybrid power generation system through the network.

  • PDF

A Study of Integrated SCADA System for Wind Farm to Support Interoperability (이기종간의 상호운용을 지원하는 풍력발전 통합 SCADA 시스템에 관한 연구)

  • Kim, Young-Gon;Moon, Chae-Joo;Joo, Yeong-Tae;Park, Tae-Sik;Chang, Young-Hak
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.70-76
    • /
    • 2013
  • Recently industrial control systems have been required to ensure intelligent, high tech automation, interconnection and interoperability demands. Therefore, there is a need to redefine the structure concepts of SCADA system for wind power. Also, at this time, the integrated management system is required for the distributed development of wind farms where are needed often interoperability features and exchange information between different wind farms, wind turbines or SCADA systems. In this paper, an integrated structural concepts for SCADA system are defined. Based on this definition of an integrated SCADA system, the basic designs are analyzed on physical layer, system layer and application layer which are corresponded to wind turbine controller, the SCADA server and the SCADA client, and implement HMI. Between the implementation SCADA server and the client, their normal functions were verified at the small scale wind energy test facilities.

Process Design of Conical Roll-Shaping for Fabrication of Variable Curvature Spiral Blade (가변곡률을 가진 나선형 블레이드 제작을 위한 원추형 롤 성형 공정설계)

  • Yang, Sungmoon;Shim, Dosik;Ji, Hoseong;Baek, Joonho;Kim, Bongsik;Ahn, Seokyoung;Park, Sanghu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.11
    • /
    • pp.911-918
    • /
    • 2016
  • A conical roll-shaping process was proposed for fabrication of a metallic spiral blade applied to a small-scale wind turbine system. A spiral blade has continuously different curvatures, with a range of 100 to 350 mm radius. To fabricate this complex shape, we developed a conical roll-shaping process having two main conical rollers for feeding a blank sheet, and two cylindrical side rollers for control of local bending. For clear understanding of the process parameters, numerical analyses were conducted using a commercial code, Pam-Stamp. This study optimized the effects of process parameters, such as gap and angle between the main rollers and side rollers, and also the movement of side rollers. In order to increase the forming efficiency, a central rotation point was also calculated by the analytical approach. This developed rolling process can thus be utilized in a sheet metal forming process for obtaining spirally curved sheet metal shapes.

Energy harvesting using an aerodynamic blade element at resonant frequency with air excitation

  • Bolat, Fevzi C.;Sivrioglu, Selim
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.379-390
    • /
    • 2019
  • In this research, we propose an energy harvesting structure with a flexible blade element vibrating at its first mode to maximize the power output of the piezoelectric material. For this purpose, a piezoelectric patch was attached on the blade element used in a small-scale wind turbine, and air load was applied with a suitable angle of attack in the stall zone. The aerodynamic load created by air excitation vibrates the blade element in its first natural frequency and maximizes the voltage output of the piezoelectric patch. The variation of power outputs with respect to electrical resistance, air speed, and extra mass is experimentally investigated for various cases. An analytical model is constituted using a single-mode blade element with piezoelectric patch dynamics, and the power outputs of the obtained model are compared with experimental results.

Static impedance functions for monopiles supporting offshore wind turbines in nonhomogeneous soils-emphasis on soil/monopile interface characteristics

  • Abed, Younes;Bouzid, Djillali Amar;Bhattacharya, Subhamoy;Aissa, Mohammed H.
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1143-1179
    • /
    • 2016
  • Offshore wind turbines are considered as a fundamental part to develop substantial, alternative energy sources. In this highly flexible structures, monopiles are usually used as support foundations. Since the monopiles are large diameter (3.5 to 7 m) deep foundations, they result in extremely stiff short monopiles where the slenderness (length to diameter) may range between 5 and 10. Consequently, their elastic deformation patterns under lateral loading differ from those of small diameter monopiles usually employed for supporting structures in offshore oil and gas industry. For this reason, design recommendations (API and DNV) are not appropriate for designing foundations for offshore wind turbine structures as they have been established on the basis of full-scale load tests on long, slender and flexible piles. Furthermore, as these facilities are very sensitive to rotations and dynamic changes in the soil-pile system, the accurate prediction of monopile head displacement and rotation constitutes a design criterion of paramount importance. In this paper, the Fourier Series Aided Finite Element Method (FSAFEM) is employed for the determination of static impedance functions of monopiles for OWT subjected to horizontal force and/or to an overturning moment, where a non-homogeneous soil profile has been considered. On the basis of an extensive parametric study, and in order to address the problem of head stiffness of short monopiles, approximate analytical formulae are obtained for lateral stiffness $K_L$, rotational stiffness $K_R$ and cross coupling stiffness $K_{LR}$ for both rough and smooth interfaces. Theses expressions which depend only on the values of the monopile slenderness $L/D_p$ rather than the relative soil/monopile rigidity $E_p/E_s$ usually found in the offshore platforms designing codes (DNV code for example) have been incorporated in the expressions of the OWT natural frequency of four wind farm sites. Excellent agreement has been found between the computed and the measured natural frequencies.