• Title/Summary/Keyword: Small-scale Modification

Search Result 41, Processing Time 0.112 seconds

Modification on Movable Storage Furniture by Non-specialist - In the KYUDOGAKUSHA Housing Renovation -

  • YI, Yongkyu;TAKADA, Mitsuo
    • Architectural research
    • /
    • v.10 no.2
    • /
    • pp.1-10
    • /
    • 2008
  • The study is to find possibilities and problems of a small-scale modification on movable storage furniture as an answer to the residents' needs. The study selected one of the renovated housing units at "KYUDOGAKUSHA" as a case study. "KYUDOGAKUSHA" was designed by architect Takeda Goichi in 1926 and was renovated in 2006. The study investigates major two aspects of movable storage furniture, which includes the furniture's layout planning and technical issues of assembling and moving moveable storage furniture. The experimental test result shows that, 1) It is clear that island type of movable storage furniture's layout can facilitate the residents'small-scale modification even though the residents are untrained. 2) To increase the assembling efficiency, the study found that it is necessary to improve the movable storage furniture's casters so that furniture can rotate. Certain moveable furniture which played a role as a connector between other furniture pieces was not able to move vertically and caused a load on other connected furniture; this needed an improvement.

Performances of Intermittently Aerated and Dynamic Flow Activated Sludge Process (2단간헐폭기 및 유로변경 간헐폭기 활성슬러지 시스템을 이용한 도시하수 처리)

  • 원성연;민경국;이상일
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.26-31
    • /
    • 1998
  • Removal of nitrogen and phosphate in wastewater is concerned to important for the prevention of eutrophication in receiving water and lake. Conventional activated sludge system designed for organics removal can be retrofitted only by modification of aeration basin to maintain anaerobic and aerobic state. Biological nutrient removal processes(BNR) such as Bardenpho, A$^{2}$/O, UCT, VIP were generally used for the treatment of wastewater. However these BNR processes used in large scale WWTP were not suitable in small scale WWTP(i.e., package type WWTP) due to relatively large fluctuation of flow rate and concentration of pollutants. The purpose of this research was to develop the compact, effective and economical package type WWTP for the removals of carbon and nitrogen in small scale wastewater. Intermittently aerated activated sludge system (IADFAS) were investigated for removal of nitrogen in both domestic wastewater, Bardenpho process was also evaluated. Nitrogen removal of IAAS, IADFAS, Bardenpho were 75, 77 and 67%, respectively.

  • PDF

Development of an Unit Cost Modification Model for Proper Actual Cost Data in Small Building Construction Projects (소규모 건축공사의 적정 실적공사비 단가보정 모델 개발)

  • Kim, Kang-Shik;Hyun, Chang-Taek;Hong, Tae-Hoon;Jo, Seong-Min;Mun, Hyun-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.1
    • /
    • pp.81-89
    • /
    • 2010
  • Since 2004, the government has changedthe cost estimate system to one of an actual cost basis in order to calculate the optimum construction cost by reflecting changes in circumstance on the construction site in a timely manner. Currently, this is being applied to public construction work forover a billion won of actual cost data in estimation by contract unit cost. However, directly reflecting actual cost, which for large-sized construction work was originally an average unit cost, to a small building, entails the application of a low discount rate for the cost of materials, labor, etc. and therefore can frequently give rise to cases in which the actual cost of work performed exceeds the contract sum, which in turn causes problems such as decreased revenues, bad effectson business operation, productivity, etc. Therefore, to apply actual cost to small-sized construction work (less than a billion won), there should be a plan to modify unit cost in a manner that can reflect project scale, etc. in order to resolve the problem of unit cost application of actual cost to small-building construction projects. The unit cost modification model for proper actual construction cost in small-scale construction projects developed by this study will help to increase the relevant productivity and proper gain, preventing the aggravation of business operations. Organizations placing orders are also expected to be able to secure a more realistic construction cost in arranging the budget.

Behaviour of composite walls under monotonic and cyclic shear loading

  • Hossain, K.M. Anwar;Wright, H.D.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.1
    • /
    • pp.69-85
    • /
    • 2004
  • The novel form of composite walling system consists of two skins of profiled steel sheeting with an in-fill of concrete. Such walling system can be used as shear elements in steel framed building subjected to lateral load. This paper presents the results of small-scale model tests on composite wall and its components manufactured from very thin sheeting and micro-concrete tested under monotonic and cyclic shear loading conditions. The heavily instrumented small-scale tests provided information on the load-deformation response, strength, stiffness, strain condition, sheet-concrete interaction and failure modes. Analytical models for shear strength and stiffness are derived with some modification factor to take into account the effect of quasi-static cycling loading. The performance of design equations is validated through experimental results.

Structural Design on Joint Component of Composite Wing of WIG Craft

  • Lee, Younggyu;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.8 no.2
    • /
    • pp.1-3
    • /
    • 2021
  • This study proposed a specific preliminary structural design procedure of the main wing for a small scale WIG vehicle to meet the target weight of the system requirement. The high stiffness and strength Carbon-Epoxy material was used for lightness, and the foam sandwich type structure at the upper skin and the spar webs was adopted for improvement of structural stability. After structural design, wing joint part was designed. Through investigation on structural design result, design modification was performed. After design modification, even thought the designed wing weight was a little bit heavier than the target wing weight, the structural safety and stability of the final design feature was confirmed.

Changing Wheat Quality with the Modification of Storage Protein Structure

  • Tamas, Laszlo;Bekes, Ferenc;Morrell, Matthew K.;Appels, Rudi
    • Journal of Plant Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.13-19
    • /
    • 1999
  • The visco-elastic properties of gluten are major determinants of the processing properties of doughs. These visco-elastic properties are strongly influenced by the ratio of monomeric and polymeric proteins and the size distribution of the polymeric proteins, which make up the gluten fraction of the dough. Recent studies have revealed that other features, such as the number of the cysteine residues of the HMW-GS, also play an important role in determining the functional characteristics. To modify the processing properties at molecular level, the relationship between the structure of molecules and dough properties has to be understood. In order to explore the relationships between individual proteins and dough properties, we have developed procedures for incorporating bacterially expressed proteins into doughs, and measuring their functional properties in small-scale equipment. A major problem in investigating the structure/function relationships of individual seed storage proteins is to obtain sufficient amounts of pure polypeptides from the complex families of proteins expressed in the endosperm. Therefore, we have established a simplified model system in which we produce specific protein genes through bacterial expression and test their functional properties in smallscale apparatus after incorporation into base flour. An S poor protein gene has been chosen as a template gene. This template gene has been modified using standard recombinant DNA techniques in order to test the effects of varying the number and position of cysteine residues, and the size of the protein. Doughs have been mixed in small scale apparatus and characterized with respect to their polymeric composition and their functional properties, including dough mixing, extensibility and small scale bating. We conclude that dough characteristics can be manipulated in a predictable manner by altering the cysteine residues and the size of high molecular weight glutenins.

  • PDF

A Study on the Effective Algorithms for tine Generalization (선형성 지형자료의 일반화에 대한 효율적인 알고리즘에 관한 연구)

  • 김감래;이호남
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.12 no.1
    • /
    • pp.43-52
    • /
    • 1994
  • This paper outlines a new approach to the line generalization when preparing small scale map on the basis of existing large scale digital map. Line generalizations are conducted based on Douglas algorithm using 1/25,000 scale topographic maps of southeastern JEJU island which produced by National Geographic Institute to analyze the fitness to the original and problems of graphical representation. Compare to the same scale map which was generated by manual method, a verity of small, but sometimes significant errors & modification of topological relationship have been detected. The research gives full details of three algorithms that operationalize the smallest visible object method, together with some empirical results. A comparison of the results produced by the new algorithms with those produced by manual generalization and Douglas method of data reduction is provided. Also this paper presents the preliminary results of an relationships between the size of smallest visual object and requiring data storages for each algorithms.

  • PDF

Evaluation on bridge dynamic properties and VIV performance based on wind tunnel test and field measurement

  • Yang, Yongxin;Ma, Tingting;Ge, Yaojun
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.719-737
    • /
    • 2015
  • Full scale measurement on the structural dynamic characteristics and Vortex-induced Vibrations (VIV) of a long-span suspension bridge with a central span of 1650 m were conducted. Different Finite Element (FE) modeling principles for the separated twin-box girder were compared and evaluated with the field vibration test results, and the double-spine model was determined to be the best simulation model, but certain modification still needs to be made which will affect the basic modeling parameters and the dynamic response prediction values of corresponding wind tunnel tests. Based on the FE modal analysis results, small-scaled and large-scaled sectional model tests were both carried out to investigate the VIV responses, and probable Reynolds Number effects or scale effect on VIV responses were presented. Based on the observed VIV modes in the field measurement, the VIV results obtained from sectional model tests were converted into those of the three-dimensional (3D) full-scale bridge and subsequently compared with field measurement results. It is indicated that the large-scaled sectional model test can probably provide a reasonable and effective prediction on VIV response.

The Remodelling of Hydraulic Structure in a Distribution Channel for Improving the Equality of the Flow Distribution (I): Design Using CFD Simulation (수리구조 개선을 통한 분배수로 균등분배 성능 향상에 관한 연구(I) : CFD를 이용한 설계 중심으로)

  • Park, No-Suk;Kim, Seong-Su;Park, Jong-Yoon;Yoon, Cheol-Hwan;Kim, Chung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.571-579
    • /
    • 2007
  • This study was conducted to qualify the equality of the flow distribution from open channel between rapid mixing basin and flocculation basins in a domestic full-scale water treatment plant, and suggest a remedy for improving the equality. In order to evaluate the feasibility of the suggested remedy, computational fluid dynamics (CFD) technique are used, and for verifying the CFD simulation results wet tests were carried out for the pilot scale channel based on geometric similarity. From the results of CFD simulation and wet tests, it was investigated that the modification of hydraulic structure in the distribution channel, which is to install the longitudinal orifice baffle in flow direction, could improve the equality of the flow distribution. Also, in the case that Froude number is relatively small (Froude number <<0.03), the open ratio of orifices on the installed baffle hardly affects the equality of flow distribution.

Recent progress in supported liquid membrane technology: stabilization and feasible applications

  • Molinari, Raffaele;Argurio, Pietro
    • Membrane and Water Treatment
    • /
    • v.2 no.4
    • /
    • pp.207-223
    • /
    • 2011
  • Supported Liquid Membranes (SLMs) have been widely studied as feasible alternative to traditional processes for separation and purification of various chemicals both from aqueous and organic matrices. This technique offers various advantages like active transport, possibility to use expensive extractants, high selectivity, low energy requirements and minimization of chemical additives. SLMs are not yet used at large scale in industrial applications, because of the low stability. In the present paper, after a brief overview of the state of the art of SLM technology the facilitated transport mechanisms of SLM based separation is described, also introducing the small and the big carrousel models, which are employed for transport modeling. The main operating parameters (selectivity, flux and permeability) are introduced. The problems related to system stabilization are also discussed, giving particular attention to the influence of membrane materials (solid membrane support and organic liquid membrane (LM) phase). Various approaches proposed in literature to enhance SLM stability are also reviewed. Modification of the solid membrane support, creating an additional layer on membrane surface, which acts as a barrier to LM phase loss, increases system stability, but the membrane permeability, and then the flux, decrease. Stagnant Sandwich Liquid Membrane (SSwLM), an implementation of the SLM system, results in both high flux and stability compared to SLM. Finally, possible large scale applications of SLMs are also reviewed, evidencing that if the LM separation process is opportunely carried out (no production of byproducts), it can be considered as a green process.