• 제목/요약/키워드: Small-dispersion asymptotics

검색결과 2건 처리시간 0.016초

Finite-Sample, Small-Dispersion Asymptotic Optimality of the Non-Linear Least Squares Estimator

  • So, Beong-Soo
    • Journal of the Korean Statistical Society
    • /
    • 제24권2호
    • /
    • pp.303-312
    • /
    • 1995
  • We consider the following type of general semi-parametric non-linear regression model : $y_i = f_i(\theta) + \epsilon_i, i=1, \cdots, n$ where ${f_i(\cdot)}$ represents the set of non-linear functions of the unknown parameter vector $\theta' = (\theta_1, \cdots, \theta_p)$ and ${\epsilon_i}$ represents the set of measurement errors with unknown distribution. Under suitable finite-sample, small-dispersion asymptotic framework, we derive a general lower bound for the asymptotic mean squared error (AMSE) matrix of the Gauss-consistent estimator of $\theta$. We then prove the fundamental result that the general non-linear least squares estimator (NLSE) is an optimal estimator within the class of all regular Gauss-consistent estimators irrespective of the type of the distribution of the measurement errors.

  • PDF

Efficient Prediction in the Semi-parametric Non-linear Mixed effect Model

  • So, Beong-Soo
    • Journal of the Korean Statistical Society
    • /
    • 제28권2호
    • /
    • pp.225-234
    • /
    • 1999
  • We consider the following semi-parametric non-linear mixed effect regression model : y\ulcorner=f($\chi$\ulcorner;$\beta$)+$\sigma$$\mu$($\chi$\ulcorner)+$\sigma$$\varepsilon$\ulcorner,i=1,…,n,y*=f($\chi$;$\beta$)+$\sigma$$\mu$($\chi$) where y'=(y\ulcorner,…,y\ulcorner) is a vector of n observations, y* is an unobserved new random variable of interest, f($\chi$;$\beta$) represents fixed effect of known functional form containing unknown parameter vector $\beta$\ulcorner=($\beta$$_1$,…,$\beta$\ulcorner), $\mu$($\chi$) is a random function of mean zero and the known covariance function r(.,.), $\varepsilon$'=($\varepsilon$$_1$,…,$\varepsilon$\ulcorner) is the set of uncorrelated measurement errors with zero mean and unit variance and $\sigma$ is an unknown dispersion(scale) parameter. On the basis of finite-sample, small-dispersion asymptotic framework, we derive an absolute lower bound for the asymptotic mean squared errors of prediction(AMSEP) of the regular-consistent non-linear predictors of the new random variable of interest y*. Then we construct an optimal predictor of y* which attains the lower bound irrespective of types of distributions of random effect $\mu$(.) and measurement errors $\varepsilon$.

  • PDF