• Title/Summary/Keyword: Small-aperture beam

Search Result 24, Processing Time 0.03 seconds

Aero-Optical Diagnostic Technique for the Hypersonic Boundary Layer Transition on a Flat Plate

  • Li, Ruiqu;Gong, Jian;Bi, Zhixian;Ma, Handong
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.6-9
    • /
    • 2015
  • A new cross disciplinary conception of transitional aero-optics is built up during analyzing and measuring the linkage between the hypersonic boundary layer transition on a flat plate and the jittering characteristics of the small-aperture beam through that boundary layer. Based on that conception, the Small-Aperture Beam Technique (SABT) and high-speed Imaging Camera System (ICS) used in aero-optical studies are considered as new techniques for the assessment of the hypersonic transition in the boundary layer on a flat plate. In the FD-20 gun tunnel, for the free stream parameters with Mach number of 8 and unit Reynolds number of $1{\times}10^7$ (1/m), those two optical techniques are used to measure the jitter of the small-aperture beam. At the same free stream parameters, the distribution of the heat transfer along the centerline of the flat plate is also measured by the thin film resistance gauge technique. The results show the similarity of the increase trend between the heat transfer and the jitter of the small-aperture beam in the transitional region. It helps us to surmise that it may be feasible to diagnose the transition in a hypersonic boundary layer on a flat plate by means of those above optical techniques.

Design of a High-Transmission C-Shaped Nano-Aperture in a Perfectly Electric Conductor Film (완전도체 박막에서 고 투과율 C형 나노 개구 설계)

  • Park Sin-Jeung;Hahn Jae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.160-165
    • /
    • 2006
  • We have designed a high-transmission nano aperture in a perfect electric conductor film with the incident beam of 532 nm wavelength. The aperture basically has a C-shape and is known to produce a bright spot nearby the aperture in small size less than diffraction limit. The bright spot is strongly coupled with the local plasmon excited through the aperture hole. The characteristics of transmission and peak power of the aperture output were calculated using finite differential time domain (FDTD) technique, and the geometry of the aperture was determined to get a maximum transmission and peak power. To find the effect of the surface plasmon induced near by the aperture, we calculated the variations of the transmittance and the beam sizes by changing the size of the input beam irradiated on the aperture.

Resonant Transmission of a Rectangular Waveguide Probe with H-type Small Aperture (H-형태 소형 개구를 가진 직사각형 도파관 탐침의 공진 투과)

  • Ko, Ji-Hwan;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1198-1204
    • /
    • 2013
  • As a microwave near field probe for near field scanning optical microscope(NSOM) system, H-shaped(ridge type) small aperture is proposed and its performances from the viewpoints of the transmission efficiency(transmission cross section) and spatial confinement(beam spot size) are compared with those of the previous narrow rectangular aperture type. While the transmission efficiencies are comparable to each other for the two structures, the transmitted beam spot size for the proposed H-shaped aperture is much smaller than that for the previous rectangular aperture. This strong point of the H-shaped aperture is expected to significantly improve near-field optical applications such as optical data storage, nanolithography and nanomicroscopy. It is also observed that the transmission efficiency can be improved if the coupling aperture is implemented in the type of the transmission cavity.

A Study on the Low-energy Large-aperture Electron Beam Generator (저에너지 대면적 전자빔 발생장치 개발에 관한 연구)

  • Jo, Ju-Hyeon;Choe, Yeong-Uk;Lee, Hong-Sik;Im, Geun-Hui;U, Seong-Hun;Lee, Gwang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.12
    • /
    • pp.785-790
    • /
    • 1999
  • This research has been carried out to develop a low-energy large-aperture pulsed electron beam generator (LELA), 200keV 1A, for industrial applications. One of the most important feature of this electron beam generator is large electron beam cross section of $190cm^2$. Low energy electron beam generators have been used for water cleaning, flue gas cleaning, and pasteurization, etc. In these applications the cross sectionof the e-beam is related to reaction efficiency. Another important feature of this LELA EB generator is easy maintenance because of its simple structure and relatively low vacuum operation compared to the conventional EB generators. The conventional EB generators need to be scanned because the small cross section thermal electron emitters are used in the conventional EB generators which have small EB cross section. In this research, we use the secondary electrons generated by ion bombardment on the HV cathode surface as a electron source. Therefore we can make any shape of EB cross section without scanning.

  • PDF

Design of the Near Field Microwave Guide Type of Probe Having Enhanced High Transmission Efficiency and Smaller Beam Spot Area (고 투과 효율과 소형 빔 스팟 면적을 갖는 근접장 마이크로웨이브 도파관 탐침의 설계)

  • Ko, Ji-Hwan;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.12
    • /
    • pp.1058-1063
    • /
    • 2015
  • In this article, we propose a near field microwave scanning probe structure in which two short conducting rods are attached to the center of the ridged(H-type) aperture, thereby reducing significantly the beam spot area while maintaining the high transmission efficiency through the output coupling H-type(ridged) aperture. Here the two short parallel conducting rods seem to play an important role of concentrating the transmitted electromagnetic energy through the H-type aperture and so reducing the beam area for high resolution. For validation of the proposed theory, the near field waveguide probe is fabricated according to the simulated results and its return loss characteristics versus frequencies are measured. The comparison between theory and experiment is seen to be in good agreements.

Design and Fabrication of Microlens Illuminated Aperture Array for Optical ROM Card System (Optical Card 시스템에서의 마이크로렌즈 조사 광프로브 어레이 설계 및 제작)

  • Kang, Shin-Ill;Kim, Seok-Min;Kim, Hong-Min;Lee, Jee-Seung;Lim, Ji-Seok;Busch, Christopher
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • An optical ROM card system which using an optical probe array generated by Talbot effect was proposed as new robust storage solution. To improve the optical density and to decrease the power consumption of the system, it is very important to make the spot sizes of optical probes smaller as well as to increase the optical efficiency from the light source to optical probes. In this study, a microlens illuminated aperture array for generating high efficiency optical probe away with small beam spot was designed and fabricated using monolithic lithography integration method. The maximum intensity of optical probes of microlens illuminated aperture array increased about 12 times of that of aperture array, and the full width half maximum of the optical probe at Talbot plane generated by microlens illuminated aperture array was $0.77{\mu}m$.

  • PDF

EXPERIMENTAL DEMONSTRATION OF ADVANTAGE OF MOTION INDUCED SYNTHETIC APERTURE RADIOMETER

  • Park, Hyuk;Kim, Sung-Hyun;Lee, Ho-Jin;Moon, Nam-Won;Yu, Hwan-Wook;NamGoong, Up;Sim, Won-Seon;Kim, Yong-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.22-25
    • /
    • 2008
  • Aperture synthesis with platform motion has been presented as a useful tool to achieve the high spatial resolution imaging. Using a motion induced synthetic aperture radiometer (MISAR), a passive microwave image can be achieved with a small number of antennas. Moreover, the MISAR is capable of imaging better than the case without motion, using the same configuration of antenna array. With a platform motion, visibility can be sampled more efficiently, and as a result the imaging performance of the MISAR shows higher quality than the case without platform motion. In this paper, the advantage of MISAR is demonstrated experimentally. Using a laboratory model of inteferometric radiometer, the point source images are obtained under the condition with platform motion and without platform motion. In the experimental results, the point source response of the MISAR shows better quality of sidelobe level and beam efficiency than the case without platform motion.

  • PDF

A Study of the Acoustic Microscope System by Large Aperture Probe (대구경 탐촉자를 이용한 초음파 현미경 시스템 연구)

  • Cho, Yong-Sang;Kim, Jae-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.475-479
    • /
    • 2003
  • Traditional ultrasonic evaluation to detect micro/small surface cracks is the pulse-echo technique using the normal immersion transducer with high frequency, or the angle beam transducer with surface wave. It is difficult to make the automatic ultrasonic system that is to detect micro and small surface crack and position on the large structure like steel and ceramic rolls, because of the huge data of inspection and the ambiguous position data of transducer. The aim of this study using the high precision scanning acoustic microscope with 10MHz large aperture transducer was to display the real time A, B, C-scan for the automatic ultrasonic system in order to detect the existence and position of surface crack. The ultrasonic method with large aperture transducer was improved the scanning time and speed over 10times faster than traditional methods.

Evaluation of the Surface Crack by a Large Aperture Ultrasonic Probe (대구경 초음파 탐촉자를 이용한 표면균열 평가)

  • Cho, Yong-Sang;Kim, Jae-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.180-185
    • /
    • 2004
  • Conventional ultrasonic examination to detect micro and small surface cracks is based on the pulse-echo technique using a normal immersion focused transducer with high frequency, or an angle-beam transducer generating surface waves. It is difficult to make an automatic ultrasonic system that can detect micro and small surface cracks and position in a large structure like steel and ceramic rolls, because of the huge data of inspection and the ambiguous position data of the transducer. In this study, a high-precision scanning acoustic microscope with a 10MHz large-aperture transducer has been used to assess the existence, position and depth of a surface crack from the real-time A, B, C scans obtained by exploiting the ultrasonic diffraction. The ultrasonic method with large aperture transducer has improved the accuracy of the crack depth assessment and also the scanning speed by ten times, compared with the conventional ultrasonic methods.

PHASE VARIATION IN DOPPLER SIGNAL FOR VARIOUS OPTICAL PARAMETERS

  • Son, Jung-Young;Kim, Myung-Sik;Oh, Myung-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.629-632
    • /
    • 1989
  • The scattered light intensity from a spherical particle passing through the cross-over region of two coherent laser beams, varies periodically. Photodetection of this light beams produces a periodic signal of varying amplitude. The phase of the signal varies with the particle size and refractive index, the beam crossing angle and wavelength, and the position and size of the scattered ligth collecting aperture. In this paper the phase variation with respect to the particle absorptive index of retraction, collecting lens size and beam crossing angle is calculated using both Mie scattering theory and reflection theory. The two theories show good agreement in phase predictions, especially for large absorptive indices and for small collection lenses. Both theories predict phase to be inversely proportional to the beam crossing angle.

  • PDF