• Title/Summary/Keyword: Small-Signal Modeling of HEMT

Search Result 4, Processing Time 0.016 seconds

A New Small-Signal Modeling Method of HEMT Using Weakly Pinched-Off Cold-HEMT (약하게 핀치오프된 Cold-HEMT를 이용한 새로운 HEMT 소신호 모델링 기법)

  • 전만영
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.743-749
    • /
    • 2003
  • By biasing the gate of cold-HEMT with a voltage slightly lower than the pinch-off point, a new small-signal modeling method that is free from gate degradation problem and requires no additional DC measurement is proposed in this paper. The method has shown excellent agreement between modeled and measured S-parameters up to 62 GHz at 49 different normal operating bias points.

Extraction of Extrinsic Circuit Parameters of HEMT by Minimizing Residual Errors (잔차 오차 최소에 의한 HEMT의 외인성 파라미터 추출)

  • Jeon, Man-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.8
    • /
    • pp.853-859
    • /
    • 2014
  • This study presents a technique for extracting all the extrinsic parameters of HEMTs by minimizing the residual errors between a pinch-off cold-FET's gate and drain pad de-embedded Z-parameters and its modeled Z-parameters calculated by the cold-FET's remaining parameters. The presented technique allows us to successfully extract the remaining extrinsic parameter values as well as the gate and drain pad capacitance value without the additional fabrications of the gate and drain dummy pad.

A Self-Consistent Semi-Analytical Model for AlGaAs/InGaAs PMHEMTs

  • Abdel Aziz, M.;El-Banna, M.;El-Sayed, M.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.1
    • /
    • pp.59-69
    • /
    • 2002
  • A semi-analytical model based on exact numerical analysis of the 2DEG channel in pseudo-morphic HEMT (PMHEMT) is presented. The exactness of the model stems from solving both Schrodinger's wave equation and Poisson's equation simultaneously and self-consistently. The analytical modeling of the device terminal characteristics in relation to the charge control model has allowed a best fit with the geometrical and structural parameters of the device. The numerically obtained data for the charge control of the channel are best fitted to analytical expressions which render the problem analytical. The obtained good agreement between experimental and modeled current/voltage characteristics and small signal parameters has confirmed the validity of the model over a wide range of biasing voltages. The model has been used to compare both the performance and characteristics of a PMHEMT with a competetive HEMT. The comparison between the two devices has been made in terms of 2DEG density, transfer characteristics, transconductance, gate capacitance and unity current gain cut-off frequency. The results show that PMHEMT outperforms the conventional HEMT in all considered parameters.

A Fast and Robust Approach for Modeling of Nanoscale Compound Semiconductors for High Speed Digital Applications

  • Ahlawat, Anil;Pandey, Manoj;Pandey, Sujata
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.182-188
    • /
    • 2006
  • An artificial neural network model for the microwave characteristics of an InGaAs/InP hemt for 70 nm gate length has been developed. The small-signal microwave parameters have been evaluated to determine the transconductance and drain-conductance. We have further investigated the frequency characteristics of the device. The neural network training have been done using the three layer architecture using Levenberg-Marqaurdt Backpropagation algorithm. The results have been compared with the experimental data, which shows a close agreement and the validity of our proposed model.