• Title/Summary/Keyword: Small signal control

Search Result 487, Processing Time 0.025 seconds

Disturbance Observer Design for a High Speed Optical Disk Drive (고배속 광디스크 적용을 위한 외란 관측기 설계)

  • 이주상;최진영;박노철;양현석;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1170-1175
    • /
    • 2003
  • Recently, the disturbance caused by an optical disk vibration and the external vibration/shock are more serious problem in an optical disk drives (ODD) as an ODD become small size and rotation speed increases. The conventional controller cannot cope with the mentioned problems properly when the disturbance and vibration are larger than some range. Therefore, we propose a new control scheme using a disturbance observer (DOB) and it can control the aforementioned problems. The designed the controller is applied to a commercial ODD in focusing direction, then its validity is proved by experimental method. By rising the disturbance observer theory, the focusing performance is conspicuously improved in the presence of sinusoidal vibrations or a shock disturbance. This algorithm also applies to a tracking structure also, because focusing structure is very similar to it.

  • PDF

Modeling and Control of ISOP Active-Clamp-Forward Converter for xEV Low Voltage DC/DC Converter

  • Naradhipa, Adhistira M.;Kim, Byeongwoo;Kim, Kangsan;Cho, Woosik;Choi, Sewan;Huh, Dongyoung;Kim, Soohong;Cho, Kyungrae
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.99-101
    • /
    • 2018
  • This paper present an input-series output-parallel active-clamp-forward converter for low voltage dc/dc xEV application. The converter can achieve ZVS turn-on for all switches. An accurate small signal model of the converter which includes the effect of leakage inductance is given and controller design based on modeling is described. Experimental and simulation results from a 3.2kW, 100kHz prototype are presented in order to verify the validity of the converter operation and the designed control parameters.

  • PDF

Optical Wireless Access Point Agent Networks

  • Lee, Tae-Gyu
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.98-106
    • /
    • 2009
  • This paper proposes an optical wireless transfer agent method which realizes the continuous and swift data transfer of optical wireless terminals in optical wireless networks. The unguided wireless channel generally shows frequent link disconnections and propagation delays due to weak wireless links. Specially speaking, optical wireless channels have more vulnerable links and roaming propagation delays relative to the weakness of the previous RF channels due to their low signal connectivity and small geographic coverage. Conventional optical wireless network protocols did not consider any fault models about physical link faults. Consequently, they have shown data transfer inefficiency for both data link control and physical wireless link control. To overcome these optical wireless environmental problems, this paper suggests a new wireless access point (or base station) agent system, which provides wireless or mobile clients with previous link layer protocols compensated.

single-phase PFC rectifier circuit consonant to Input voltage waveform detection (입력전압 파형 검출만으로 구성된 단상 PFC 정류회로)

  • Jeong, S.H.;Lee, H.W.;Chun, J.H.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.12-15
    • /
    • 2002
  • This propose a simple DC voltage sensor less single phase PFC(Power Factor Correction Circuit) converter by detecting a AC current sensors are not required to construct the control system. The DC voltage is directly controlled by the command input signal Kd($V_o/V_a$)for the boost chopper circuit. The DC voltage regulation is small because of the feed forward control for the AC line voltage VS and no dependence of the circuit parameters. The sinusoidal current waveform in phase with the AC input voltage can be obtained. These characteristics are confirmed by some experiment results.

  • PDF

Modeling and Regulator Design for Three-Input Power Systems with Decoupling Control

  • Li, Yan;Zheng, Trillion Q.;Zhao, Chuang;Chen, Jiayao
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.912-924
    • /
    • 2012
  • In hybrid renewable power systems, the use of a multiple-input dc/dc converter (MIC) leads to simpler circuit and lower cost, when compared to the conventional use of several single-input converters. This paper proposed a novel three-input buck/boost/buck-boost converter, which can be used in applications with various values of input voltage. The energy sources in this converter can deliver power to the load either simultaneously or individually in one switching period. The steady relationship, the power management strategy and the small-signal circuit model of this converter have been derived. With decoupling technology, modeling and regulator design can be obtained under multi-loop control modes. Finally, three generating methods of a multiple-input buck/boost/buck-boost converter is given, and this method can be extended to the other multiple-input dc/dc converters.

Design of Simple Controller for Minicar BLDC Motor Based on Low Cost Microprocessor

  • Tao, Yu;Song, Doo-Young;Lei, Zhang;Park, Sung-Jun;Jung, Tae-Uk;Kim, Cheul-U
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.7-9
    • /
    • 2007
  • If used to drive the minicar, the BLDC Motor has advantages of weightless, efficient, small-size and credibleness. In this paper at first the position detecting method for BLDC was introduced, secondly the simulation of control algorithm was done and at last the prototype controller based one chip processor MEGA48 was fabricated. The controller proposed has characteristic of cheap cost, reliable performance and totally meeting demands of minicar control.

  • PDF

Vibration Control for Building Structures usign Active Mass Driver(I) : System Design (능동 제어장치를 이용한 건물의 진동제어 (I): 시스템 설계)

  • 민경원;김두훈;이성경;황재승
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.87-94
    • /
    • 1998
  • Increasing flexibility and lightness of recently built high-rise buildings make the structures susceptible to loads such as earthquakes and winds. Therefore, higher performance vibration control systems to reduce the vibration levels are demanded more than any time in the past. One of the typical active vibration control systems is the active mass driver (AMD). In this paper, an active vibration control system consisting of small shaking table, building model, sensors, signal processing board and AMD is constructed. The dynamic characteristics of these individual systems are investigated through the experimental study. The performance of the active vibration control system is verified through the El Centro earthquake(1940,NS) on the building model.

  • PDF

A Voltage-fed Single-stage PFC Full-bridge Converter with Asymmetric Phase-shifted Control for Battery Chargers

  • Qian, Qinsong;Sun, Weifeng;Zhang, Taizhi;Lu, Shengli
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • A novel voltage-fed single-stage power factor correction (PFC) full-bridge converter based on asymmetric phase-shifted control for battery chargers is proposed in this paper. The attractive feature of the proposed converter is that it can operate in a wide output voltage range without an output low-frequency ripple, which is indispensable in battery charger applications. Meanwhile, the converter can maintain a high power factor and a controllable dc bus voltage over a wide output voltage range. In this paper, the realization of PFC and the operation principle of asymmetric phase-shifted control are given. A small-signal analysis of the proposed single-stage power factor correction (PFC) full-bridge converter is performed. Experimental results obtained from a 1kW experimental prototype are given to validate the feasibility of the proposed converter. The PF is higher than 0.97 over the entire output voltage range with the proposed control strategy.

Diagnosis and Control of Machining States in Micro-Drilling for Productivity Enhancement (미세구멍 가공의 생산성 향상을 위한 상태식별 및 제어)

  • 정만실;조동우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.117-129
    • /
    • 1998
  • Micro-hole drilling (holes less than 0.5 mm in diameter with aspect ratio larger than 10) is recently having more attention in a wide spectrum of precision production industries. Alternative methods such as EDM. laser drilling, etc. can sometimes replace the mechanical micro-hole drilling but are not acceptable in PCB manufacture because of the inferior hole quality and accuracy. The major difficulties in micro-hole drilling are related to small signal to noise ratios, wandering motions of the inlet stage, high aspect ratios, high temperatures and so forth. Of all the difficulties. the most undesirable one is the increase of drilling force as the drill proceeds deeper into the hole. This is caused mainly from the chip effects. Peck-drilling is thus widely used for deep hole drilling despite that it suffers from low productivity. In the paper, a method of cutting force regulation is proposed to achieve continuous drilling. A PD and a sliding mode control algorithms were implemented through controlling the spindle rotating frequency. Experimental results show that the sliding mode control reduces the nominal cutting force and the variation of the cutting force better than the PD control. The advantages of the regulation, such as increase of drill life, fast stabilization of a wandering motion, and the precise positioning of the hole are verified in experiment.

  • PDF

Input Impedances of PWM DC-DC Converters: Unified Analysis and Application Example

  • Pidaparthy, Syam Kumar;Choi, Byungcho
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2045-2056
    • /
    • 2016
  • The input impedances of pulse width modulated (PWM) dc-to-dc converters, which dictate the outcomes of the dynamic interaction between dc-to-dc converters and their source subsystem, are analyzed in a general and unified manner. The input impedances of three basic PWM dc-to-dc converters are derived with both voltage mode control and current mode control. This paper presents the analytical expressions of the 24 input impedances of three basic PWM dc-to-dc converters with the two different control schemes in a factorized time-constant form. It also provides a comprehensive reference for future dynamic interaction analyses requiring knowledge of the converters' input impedances. The theoretical predictions of the paper are all supported by measurements on prototype dc-to-dc converters. The use of the presented results is demonstrated via a practical application example, which analyzes the small-signal dynamics of an input-filter coupled current-mode controlled buck converter. This elucidates the theoretical background for the previously-reported eccentric behavior of the converter.