The standard uptake values (SUVs) strongly depend on positron emission tomographs (PETs) and image reconstruction methods. Various image reconstruction algorithms in GE Discovery MIDR (DMIDR) and Discovery Ste (DSte) installed at Department of Nuclear Medicine, Seoul Samsung Medical Center were applied to measure the SUVs in an anthropomorphic torso phantom. The measured SUVs in the heart, liver, and background were compared to the actual SUVs. Applied image reconstruction algorithms were VPFX-S (TOF+PSF), QCFX-S-350 (Q.Clear+TOF+PSF), QCFX-S-50, VPHD-S (OSEM+PSF) for DMIDR, and VUE Point (OSEM) and FORE-FBP for DSte. To reduce the radiation exposure to radiation technologists, only the small amount of radiation source 18F-FDG was mixed with the distilled water: 2.28 MBq in the 52.5 ml heart, 20.3 MBq in the 1,290 ml liver and 45.7 MBq for the 9,590 ml in the background region. SUV values in the heart with the algorithms of VPFX-S, QCFX-S-350, QCFX-S-50, VPHD-S, VUE Point, and FOR-FBP were 27.1, 28.0, 27.1, 26.5, 8.0, and 7.4 with the expected SUV of 5.9, and in the background 4.2, 4.1, 4.2, 4.1, 1.1, and 1.2 with the expected SUV of 0.8, respectively. Although the SUVs in each region were different for the six reconstruction algorithms in two PET/CTs, the SUV ratios between heart and background were found to be relatively consistent; 6.5, 6.8, 6.5, 6.5, 7.3, and 6.2 for the six reconstruction algorithms with the expected ratio of 7.8, respectively. Mean SNRs (Signal to Noise Ratios) in the heart were 8.3, 12.8, 8.3, 8.4, 17.2, and 16.6, respectively. In conclusion, the performance of PETs may be checked by using with the SUV ratios between two regions and a relatively small amount of radioactivity.