• Title/Summary/Keyword: Small sectional tunnel

Search Result 24, Processing Time 0.021 seconds

Ultrasound Findings and Treatment of Wrist and Hand Diseases (완관절과 수부 질환의 초음파 소견과 치료)

  • Lee, Jong Hwa
    • Clinical Pain
    • /
    • v.20 no.1
    • /
    • pp.15-19
    • /
    • 2021
  • There are many wrist and hand diseases in which ultrasound can help in the diagnosis and treatment. Because many small structures are located, identifying anatomical locations and pathways is especially important. In De Quervain's syndrome, it is necessary to find tendon lesions located in the first compartment of the wrist. If injection therapy is required, administer the regimen accurately within the tendon sheath through ultrasound. In carpal tunnel syndrome, there are several methods to diagnose a disease by measuring cross-sectional area of the median nerve. Ultrasound has the advantage of administering injection therapy without damaging the nerve. Intersection syndrome can be diagnosed by observing swelling and hypoechoic appearances at the point where the tendons of the first compartment cross over the second compartment of the wrist. Ultrasound-guided injection is also safe and efficient. If there is a trigger finger lesion, the most representative findings is to observe a nodular hypoechoic thickening of the involved A1 pulley. When injection therapy is performed, it is effective to administer medication between pulley and flexor tendons as much as possible to reduce pressure on the attached structures.

Evaluation of Segment Lining Fire Resistance Based on PP Fiber Dosage and Air Contents (세그먼트 라이닝의 PP섬유 혼입량과 공기량 변화에 따른 화재저항 특성 평가)

  • Choi, Soon-Wook;Kang, Tae Sung
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.469-479
    • /
    • 2021
  • As a material for preventing spalling of concrete, the effectiveness of PP fiber has already been confirmed. However, it is necessary to consider the maximum temperature that occurs during a fire, and to solve the mixing problem and the strength reduction problem that occur depending on the mixing amount. In this study, the fire resistance performance of tunnel segment linings according to the PP fiber content and air volume under the RABT fire scenario was investigated. As a result, no spalling or cross-sectional loss occurred in all test specimens, and when the PP fiber content was small, the maximum temperature was relatively high and the maximum temperature arrival time was also fast. On the other hand, no trend was found for the maximum temperature and arrival time according to the difference in air volume. In the internal temperature distribution results for the PP fiber mixing amount of 0.75, 1.0, 1.5, and 2.0 kg/m3, the results of 0.75 and 1.0 kg/m3 showed similar temperature distribution, and the results of 1.5 and 2.0 kg/m3 were similar. It was confirmed that the internal temperature distribution tends to decrease at the same depth when the amount of PP fiber mixed is large, and it was confirmed that a remarkable difference occurred from the results of 1.0 kg/m3 and 1.5 kg/m3 of PP fiber mixed amounts.

Development of a Low Pressure Auxiliary Fan for Local Large-opening Limestone Mines (대단면국내석회석광산용저풍압국부선풍기개발연구)

  • Lee, Chang Woo;Nguyen, Van Duc
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.543-555
    • /
    • 2015
  • At present, local limestone mines with large opening employ auxiliary fans for workplace ventilation which have been used in coal mines with much smaller airways. Considering the low static pressure loss in the large-opening mines, high pressure auxiliary fans face serious economical limitations mainly due to their excessive capacity. The optimal fan selected for the ventilation in large-opening working places should supply air quantity enough for maintaining safe environment and keep its operating cost as low as possible. This study focuses on the development of a low pressure auxiliary fan designed to have smaller range of the static head but to have more potential for higher ventilation and energy efficiency. The flow characteristics of high and low pressure auxiliary fans were theoretical as well as experimentally investigated to assess the ventilation efficiency in term of environmental and economical aspects. Moreover, the low pressure fan was tested in two limestone mine sites with small and large cross-sectional areas for evaluating its ventilation efficiency. Results from this study can be applied to improve the economy and efficiency of auxiliary fan for ensuring better air quality and work environment management.

Development of Vertical Separated Tubular Steel Pole (종방향 분할형 관형지지물 개발)

  • Lee, Won-kyo;Mun, Sung-Duk;Shin, Kooyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.257-262
    • /
    • 2019
  • Lattice steel towers for overhead transmission lines have been replaced by tubular steel poles due to the visual impact of large and complex shape of truss type. Demand for tubular steel poles consisting of a single frame member continues to grow because of its advantages such as visual minimization, architectural appeal and minimal site consumptions. However, there are some constraints on the transportation and construction. As the diameter of tower base has been enlarged, it may exceed minimum height limit required to pass the tunnel in case of land transportation. Also, in a narrow place where it is not easy to secure the installation areas such as mountainous places, there might be some areas wherein it must secure a wide working space so that large vehicles and working cranes will be allowed to enter. In this paper, we presented a vertical separated tubular steel pole, which is a new type of support that can be implemented for general purpose such as mountainous areas or narrow areas to improve the issues raised by breaking away from the conventional design and fabrication methods. Technical approaches for overcoming the limit of the cross-sectional size is to separate and modularize the cross-section of the tubular steel pole designed with a size that cannot be carried or assembled, and to lighten it with a weight capable of being transported and assembled in a narrow space or mountainous area. As a result of this research, it will be possible to enter small and medium sized vehicles in locations where it is restricted to transport by large-sized vehicles. In the case of mountainous areas, it will be possible to divide it into a weight capable of being carried by a helicopter and it will be easy to adjust and fabricate it with individual modules. Furthermore, in order to break away from the traditional construction method, we proposed the equipment that can be applied to the assembly of Tubular Steel Pole without using a large crane in locations where there is no accessible road or in locations wherein large cranes cannot enter. In particular, this paper shows the movable assembling equipment and some methods that are specialized for vertical separated tubular steel pole consisting of members with reduced weight. The proposed assembly equipment is a device for assembling the body of the Tubular Steel Poles. It will be installed inside the support and the modules can be lifted by using the support itself.