• Title/Summary/Keyword: Small resistance arteries

Search Result 8, Processing Time 0.026 seconds

Endothelium-derived Relaxing Factors of Small Resistance Arteries in Hypertension

  • Kang, Kyu-Tae
    • Toxicological Research
    • /
    • v.30 no.3
    • /
    • pp.141-148
    • /
    • 2014
  • Endothelium-derived relaxing factors (EDRFs), including nitric oxide (NO), prostacyclin ($PGI_2$), and endothelium-derived hyperpolarizing factor (EDHF), play pivotal roles in regulating vascular tone. Reduced EDRFs cause impaired endothelium-dependent vasorelaxation, or endothelial dysfunction. Impaired endothelium-dependent vasorelaxation in response to acetylcholine (ACh) is consistently observed in conduit vessels in human patients and experimental animal models of hypertension. Because small resistance arteries are known to produce more than one type of EDRF, the mechanism(s) mediating endothelium-dependent vasorelaxation in small resistance arteries may be different from that observed in conduit vessels under hypertensive conditions, where vasorelaxation is mainly dependent on NO. EDHF has been described as one of the principal mediators of endothelium-dependent vasorelaxation in small resistance arteries in normotensive animals. Furthermore, EDHF appears to become the predominant endothelium-dependent vasorelaxation pathway when the endothelial NO synthase (NOS3)/NO pathway is absent, as in NOS3-knockout mice, whereas some studies have shown that the EDHF pathway is dysfunctional in experimental models of hypertension. This article reviews our current knowledge regarding EDRFs in small arteries under normotensive and hypertensive conditions.

Endothelial Ca2+ signaling-dependent vasodilation through transient receptor potential channels

  • Hong, Kwang-Seok;Lee, Man-Gyoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.4
    • /
    • pp.287-298
    • /
    • 2020
  • Ca2+ signaling of endothelial cells plays a critical role in controlling blood flow and pressure in small arteries and arterioles. As the impairment of endothelial function is closely associated with cardiovascular diseases (e.g., atherosclerosis, stroke, and hypertension), endothelial Ca2+ signaling mechanisms have received substantial attention. Increases in endothelial intracellular Ca2+ concentrations promote the synthesis and release of endothelial-derived hyperpolarizing factors (EDHFs, e.g., nitric oxide, prostacyclin, or K+ efflux) or directly result in endothelial-dependent hyperpolarization (EDH). These physiological alterations modulate vascular contractility and cause marked vasodilation in resistance arteries. Transient receptor potential (TRP) channels are nonselective cation channels that are present in the endothelium, vascular smooth muscle cells, or perivascular/sensory nerves. TRP channels are activated by diverse stimuli and are considered key biological apparatuses for the Ca2+ influx-dependent regulation of vasomotor reactivity in resistance arteries. Ca2+-permeable TRP channels, which are primarily found at spatially restricted microdomains in endothelial cells (e.g., myoendothelial projections), have a large unitary or binary conductance and contribute to EDHFs or EDH-induced vasodilation in concert with the activation of intermediate/small conductance Ca2+-sensitive K+ channels. It is likely that endothelial TRP channel dysfunction is related to the dysregulation of endothelial Ca2+ signaling and in turn gives rise to vascular-related diseases such as hypertension. Thus, investigations on the role of Ca2+ dynamics via TRP channels in endothelial cells are required to further comprehend how vascular tone or perfusion pressure are regulated in normal and pathophysiological conditions.

Diverse Mechanisms of Relaxin's Action in the Regulation of Smooth Muscles and Extracellular Matrix of Vasculature and Fibrosis (혈관과 섬유증의 평활근 및 세포외기질 조절에 대한 릴랙신의 다양한 작용기전)

  • Min, Gyesik
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.175-188
    • /
    • 2022
  • Relaxin has been demonstrated to have regulatory functions on both the smooth muscle and extracellular matrix (ECM) of blood vessels and fibrotic organs. The diverse mechanisms by which relaxin acts on small resistance arteries and fibrotic organs, including the bladder, are reviewed here. Relaxin induces vasodilation by inhibiting the contractility of vascular smooth muscles and by increasing the passive compliance of vessel walls through the reduction of ECM components, such as collagen. The primary cellular mechanism whereby relaxin induces arterial vasodilation is mediated by the endothelium-dependent production of nitric oxide (NO) through the activation of RXFP1/PI3K, Akt phosphorylation, and eNOS. In addition, relaxin triggers different alternative pathways to enhance the vasodilation of renal and mesenteric arteries. In small renal arteries, relaxin stimulates the activation of the endothelial MMPs and EtB receptors and the production of VEGF and PlGF to inhibit myogenic contractility and collagen deposition, thereby bringing about vasodilation. Conversely, in small mesenteric arteries, relaxin augments bradykinin (BK)-evoked relaxation in a time-dependent manner. Whereas the rapid enhancement of the BK-mediated relaxation is dependent on IKCa channels and subsequent EDH induction, the sustained relaxation due to BK depends on COX activation and PGI2. The anti-fibrotic effects of relaxin are mediated by inhibiting the invasion of inflammatory immune cells, the endothelial-to-mesenchymal transition (EndMT), and the differentiation and activation of myofibroblasts. Relaxin also activates the NOS/NO/cGMP/PKG-1 pathways in myofibroblasts to suppress the TGF-β1-induced activation of ERK1/2 and Smad2/3 signaling and deposition of ECM collagen.

Lung Biopsy in Congenital Heart Disease (선천성 심장 질환 환자의 폐 생검)

  • 김광호
    • Journal of Chest Surgery
    • /
    • v.14 no.1
    • /
    • pp.9-16
    • /
    • 1981
  • Twenty eight patients with conpnital heart disuse underwent lung biopsy to assets pulmonary obstructive vascular disease at cardiac surpry. Thirteen patients had patent ductus arteriosus, 10, ventricular septal defects and S, atrial septal defects. The aaes were between 2 and 30 years. In patients with patent ductus arteriosus lung biopsy was performed from the IIngular Hlment. The anterior seament of the right upper lobe was blopsled in cases with ventricular septal defect and atrial septal defect. Grading of pulmonary obstructive vascular disease could not be assessed In 9 cases. In 2 cases poor quality of the slides made us impossible to evaluate and In 7 cases there were no suitable small muscular arteries to evaluate in the slides of lung tissue especially taken from the IIngular seament. Nineteen cases were evaluated pulmonary obstructive vascular disease. Among them 17 cases had Heath-Edwards changes of grade 1 and 2 patients had that of grade 3. The thickness of media was measured. It was expressed as percentage of medial thickness to outer diameter of artery. The medial thickness was correlated proportionally with elevation of pulmonary arterial pressure and pulmonary vascular resistance to systemic vascular resistance ratio. There were no complications related to the procedure of lung biopsy.

  • PDF

Surgical correction of complex cyanotic cardiac malformations (청색증성 복잡심기형의 교정수술)

  • 김종환
    • Journal of Chest Surgery
    • /
    • v.16 no.1
    • /
    • pp.18-29
    • /
    • 1983
  • Thirty-two patients with a cyanotic cardiac malformations having more complex intracardiac defects than ones in a tetralogy of Fallot underwent complete intracardiac repairs in a-full-year period from July 1981 to June 1982. Twenty-two patients [68.8%] died within 30 days after surgery: Transposition of the great arteries, seven of 10 patients; Double-outlet right ventricle, four of 6 patients; Tricuspid atresia, four of 6 patients; Single ventricle, all of 4 patients; Pulmonary atresia, two of 3 patients; Double-outlet left ventricle, none of 2 patients; and Truncus arteriosus, one of a single patient. All deaths occurred with a low cardiac output syndrome or a failed off-bypass, and they were almost always accompanied with other grave postoperative complications. The complex intracardiac anatomy itself was one of the risk factors by making a complete intracardiac repair of the defects difficult in a small heart. The reconstruction of the right ventricular outflow carried a difficulty in balancing an adequate relief of the obstruction with an avoidance of making too much pulmonary valvular insufficiency as well. On the other hand, the presence of an elevated pulmonary arterial pressure and a high pulmonary vascular resistance was also the factors affecting the postoperative surviv als. The importance of detailed knowledge of intracardiac anatomy and hemodynamics from the careful preoperative evaluation of the patient was discussed along with the necessity of technical refinement of the correction.

  • PDF

Evaluation of Cerebrovascular Reactivity According to Age Using Transcranial Doppler (Transcranial Doppler를 이용한 연령에 따른 뇌혈관 반응성 평가)

  • Lee, Gyu Taek;Kim, Jong Gyu
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.36 no.1
    • /
    • pp.43-48
    • /
    • 2004
  • Cerebral vasoreactivity is an index of autoregulation of cerebral perfusion, and can be measured using functional images such as Xe CT, SPECT and PET in reponse to hypercapneic stimulus. In order to measure cerebral $CO_2$ vasoreactivity in routine TCD study conveniently and reliably, we devised a method of rebreathing into closed volume of reservoir bag as a hypercapneic stimulus, and applied it to 44 healthy volunteers. As a hypercapneic stimulus, we applied fitting mask connected with closed reservoir bag for about 90 seconds, and mean blood flow velocity(MBFV) and pulsatility index(PI) were evaluated at proximal middle cerebral arteries(MCA) of 50-55 mm depth, before and after the hypercapneic stimulus. Age affected the MFV and PI value showed significant and the MFV was 56.45(SD=9.75)cm/sec, while PI was 0.406(SD=0.089). As age increases the flow velocity decreased significantly whereas PI value increased(P<0.05). The vasoreactvity significantly decreased with age(P<0.05). The decrease of cerebral blood flow quantity and cerebral blood flow velocity is not only because of increase of diameter of cerebrovascular resulting from aging, but the resistance increase of small blood vessel resulting from the increase of PI & RI value is regarded. We suppose that the rebreathing method is a reliable and convenient technique as a hypercapneic stimulus in determining cerebral $CO_2$ vasoreactivity. The rebreathing method could be non-invasive and useful methods in estimation of the cerebrovascular reactivity and could be applied to the basal and follow-up evaluation of the cerebrovascular reserve of the ischemic stroke patients.

  • PDF

Twisting Effect on Supermicroanastomosis of the Superficial Inferior Epigastric Artery in a Rat Model (혈관 비틀림이 백서 천층하복부 동맥의 초미세문합에 미치는 효과)

  • Seo, Mi-Hyun;Kim, Soung-Min;Eo, Mi-Young;Kang, Ji-Young;Myoung, Hoon;Lee, Jong-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.5
    • /
    • pp.375-384
    • /
    • 2011
  • Purpose: The advent of microsurgical technique and instruments, particularly in the field of perforator flap and supermicrosurgery, which have expanded the scope of microsurgery. However, supermicroanastomosis without any compression, tension, or distortions must be achieved to reach successful outcomes. Small-caliber vessels, such as those with an internal diameter less than 0.2 mm, are susceptible to inadvertent twisting of the anastomosis. In this study, using the superficial inferior epigastric artery (SIEA)-based flap model in Sprague-Dawley (SD) rats, we evaluated the acceptable limits of twisting effects on supermicroanastomotic sites. Methods: A total of 20 supermicroanastomoses were performed using the SIEA-based flap model in 10 male SD rats, 10-weeks-of-age, weighing 300~350 g. Rats were divided into five groups of two with four flaps as follows: 1) sham, 2) control group with end to end SIEA arterial supermicroanastomosis, 3) experimental I (EA1) with $90^{\circ}$ twisting, 4) experimental II (EA2) with $180^{\circ}$ twisting, and 5) experimental III (EA3) with $270^{\circ}$ twisting of the supermicroanastomosis. Each SIEA was anastomosed using six 11-0 $Ethilon^{(R)}$ (Ethicon Inc. Co., NJ, USA) stitches except in the sham group where the SIEA was only clamped with Supermicro vascular $clamps^{(R)}$ (S&T, Neuhausen, Switzerland) for 20 minutes. Results: The anastomosed arterial patency showed no remarkable changes according to doppler waveforms measured with a Smardop 45 Doppler System (Hadeco Inc., Kawasaki, Japan). The pulsatility index (PI) was increased at postoperative day 10 in the EA2 and EA3 groups, and the resistance index (RI) showed no statistically significant difference between preoperative and postoperative values at 10 days. Histologic specimens from the EA3 group showed increased tunica media necrosis, convolution of the internal elastic lamina, densely packed platelets, fibrin, and erythrocytes. Flap viability and anastomosed vessel patency were not significantly affected by the degree of arterial twisting in this study, other than in the EA3 group where minor effects on arterial patency of the microanastomoses were encountered. Conclusion: It appears that minor twisting on small caliber arteries, used in supermicroanastomoses, can be tolerated. However, twisting should be avoided as much as possible, and more than $180^{\circ}$ twisting must be prevented in clinical practice.

Effects of Sahyangsohap-won on Cerebral Hemodynamics in Healthy Subjects (사향소합원(麝香蘇合元)이 정상인의 뇌혈류역학에 미치는 영향)

  • Koo, Bon-Soo;Kim, Sung-Hwan;Moon, Sang-Kwan;Cho, Ki-Ho;Kim, Young-Suk;Bae, Hyung-Sup;Lee, Kyung-Sup;Ryu, Soon-Hyun
    • The Journal of Internal Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.199-205
    • /
    • 2001
  • Background and Purpose : Transcranial doppler ultrasonography(TCD) is a noninvasive and nonradioactive technique for evaluation of the hemodynamics in large cerebral vessels. Sahyangsohap-won(SS) has been considered to be effective for the treatment of various disease, especially cerebrovascular, cardiovascular, and psychosomatoform disorders. But, there is no study about the effect of SS on the cerebral hemodynamics in humans. The aim of this study was to assess the effect of SS on the changes in cerebral hemodynamics and the dose-dependant effect by using TCD. Subjects and Methods : 30 healthy subjects were randomly divided into three group: group 1 took no drug, group 2 took SS one pill, and group 3 took SS 2 pills. Changes in the mean blood flow velocity(MBFV) and pulsatility index(PI) in the middle cerebral artery were evaluated by means of TCD. We obtained hypercapnia with breath-holding and evaluated cerebrovascular reactivity with the breath-holding index(BHI). Systolic blood pressure(SBP), diastolic blood pressure(DBP), and heart rate(HR) were measured by means of ambulatory blood pressure monitoring. In group 2 and group 3, the evaluations were performed during the baseline and were repeated at 20, 40, and 60 minutes after SS administration. In group 1, the evaluation was performed at corresponding time intervals. Results : In mean values of MSFV, PI, SSP, DBP, and HR, no stastically significant differences were found between the 3 groups. However, BHI values were significantly lower in groups 2 and 3 than in group 1 at 40 minutes after SS administration(P<0.05, group 1 vs group 2, group 1 vs group 3 by post-hoc analysis: Scheffe's test) but in dose-dependant effect, there was no difference between group 2 and group 3. Conclusion : These results suggest that SS can decrease vascular resistance in cerebral small arteries or arterioles and enhance their distensibility. Further studies on larger numbers of subjects are needed to confirm these effects and the dose-dependant effects.

  • PDF