• Title/Summary/Keyword: Small protein

Search Result 1,755, Processing Time 0.031 seconds

Depressed Neuronal Growth Associated Protein (GAP)-43 Expression in the Small Intestines of Mice Experimentally Infected with $Neodiplostomum$ $seoulense$

  • Pyo, Kyoung-Ho;Kang, Eun-Young;Jung, Bong-Kwang;Moon, Jung-Ho;Chai, Jong-Yil;Shin, Eun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.50 no.1
    • /
    • pp.89-93
    • /
    • 2012
  • $Neodiplostomum$ $seoulense$ (Digenea: Neodiplostomidae) is an intestinal trematode that can cause severe mucosal pathology in the small intestines of mice and even mortality of the infected mice within 28 days after infection. We observed neuronal growth associated protein-43 (GAP-43) expression in the myenteric plexus of the small intestinal wall of $N.$ $seoulense$-infected mice until day 35 post-infection (PI). BALB/c mice were infected with 200 or 500 $N.$ $seoulense$ metacercariae isolated from naturally infected snakes and were killed every 7 days for immunohistochemical demonstration of GAP-43 in the small intestines. $N.$ $seoulense$-infected mice showed remarkable dilatation of intestinal loops compared with control mice through days 7-28 PI. Conversely, GAP-43 expression in the mucosal myenteric plexus was markedly ($P$<0.05) reduced in the small intestines of $N.$ $seoulense$-infected mice during days 7-28 PI and was slightly normalized at day 35 PI. From this study, it is evident that neuronal damage occurs in the intestinal mucosa of $N.$ $seoulense$-infected mice. However, the correlation between intestinal pathology, including the loop dilatation, and depressed GAP-43 expression remains to be elucidated.

Skin biopsy: an emerging method for small nerve fiber evaluation

  • Sohn, Eun Hee
    • Annals of Clinical Neurophysiology
    • /
    • v.20 no.1
    • /
    • pp.3-11
    • /
    • 2018
  • Skin biopsy and staining the specimens with immuno-reactive markers has been proven to be a useful method to demonstrate the pathologic status of small nerve fibers. Quantification of intraepidermal nerve fiber density using anti-protein gene product 9.5 antibody is a standard method to diagnose small fiber neuropathy. Skin biopsy also makes it possible to differentiate the nerve fibers according to their function by using different markers. Quantification of dermal structures with different types of nerve fibers could reveal the pathophysiologic mechanism of the disease state.

Simulation Methods for Prediction of Membrane Protein Structure

  • Son, Hyeon-S.
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1998.06a
    • /
    • pp.10-10
    • /
    • 1998
  • IMPs are important to cells in functions such as transport, energy transduction and signalling. Three dimensional molecular structures of such proteins at atomic level are needed to understand such processes. Prediction of such structures (and functions) is necessary especially because there are only a small number of membrane protein structures determined in atomic resolution.(omitted)

  • PDF

Biophysical effect of lipid modification at palmitoylation site on the structure of Caveolin 3

  • Ma, Yu-Bin;Kang, Dong-Hoon;Kim, Myeongkyu;Kim, Ji-Hun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.3
    • /
    • pp.67-72
    • /
    • 2019
  • Caveolae are small plasma membrane invaginations that play many roles in signal transduction, endocytosis, mechanoprotection, lipid metabolism. The most important protein in caveolae is the integral membrane protein, caveolin, which is divided into three families such as caveolin 1, caveolin 2, and caveolin 3. Caveolin 1 and 3 are known to incorporate palmitate through linkage to three cysteine residues. Regulation of the protein palmitoylation cycle is important for the cellular processes such as intracellular localization of the target protein, membrane association, conformation, protein-protein interaction, and activity. However, the detailed aspect of individual palmitoylation has not been studied. In the present work, the role of each lipid modification at three cysteines was studied by NMR. Our results suggest that each lipid modification at the natively palmitoylation site has its own roles. For example, lipidations to C106 and C129 are play a role in structural stabilization, however, interestingly, lipid modification to C116 interrupts the structural stabilization.

Effect of Adrenergic and Cholinergic Agents on the Activities of Protein Methylases in Pancreatic Tissue (생쥐 췌조직내 Protein Methylase에 대한 자율신경계약물의 영향)

  • 유태무;박선미;이향우
    • YAKHAK HOEJI
    • /
    • v.35 no.4
    • /
    • pp.341-347
    • /
    • 1991
  • It was reported that protein carboxymethylation is involved in amylase secretion of parotid gland by isoproterenot. It was also suggested that a small part of the total cellular protein carboxymethylation is directly involved in pancreatic enzyme secretion. On the contrary, other authors reported that there is no relationship between protein carboxymethylation and secretion in pancreas and parotid gland. In recent study, it was proposed that a methyl acceptor protein plays a limited modulatory role in the coupling of cytosolic $Ca^{++}$ accumulation and exocytosis. In this study, the effects of cholinergic and adrenergic agents on the activities of protein methylase II in pancreatic tissues were examined to test the relationship between protein methylation and pancreatic secretion. The results are as follows. The activity of amylase was slightly increased at the concentration of $10^{-5}$ M of isoproterenol and norepinephrine. The activities of protein methylase I and II were decreased by isoproterenol and norepinephrine, but the activities of protein methylase III were hardly changed. The cholinergic stimulants acetylcholine and carbachol at a concentration of $10^{-5}$ M increased the activities of protein methylase I and decreased the activitiy of protein methylase III compared with control.

  • PDF

Identification and Characterization of Protein Encoded by orf382 as $\small{L}$-Threonine Dehydrogenase

  • Ma, Fei;Wang, Tianwen;Ma, Xingyuan;Wang, Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.748-755
    • /
    • 2014
  • In the genome annotation of Escherichia coli MG1655, the orf382 (1,149 bp) is designated as a gene encoding an alcohol dehydrogenase that may be Fe-dependent. In this study, the gene was amplified from the genome by PCR and overexpressed in Escherichia coli BL21(DE3). The recombinant $6{\times}$His-tag protein was then purified and characterized. In an enzymatic assay using different hydroxyl-containing substrates (n-butanol, $\small{L}$-threonine, ethanol, isopropanol, glucose, glycerol, $\small{L}$-serine, lactic acid, citric acid, methanol, or $\small{D}$-threonine), the enzyme showed the highest activity on $\small{L}$-threonine. Characterization of the mutant constructed using gene knockout of the orf382 also implied the function of the enzyme in the metabolism of $\small{L}$-threonine into glycine. Considering the presence of tested substrates in living E. coli cel ls and previous literature, we believed that the suitable nomenclature for the enzyme should be an $\small{L}$-threonine dehydrogenase (LTDH). When using $\small{L}$-threonine as the substrate, the enzyme exhibited the best catalytic performance at $39^{\circ}C$ and pH 9.8 with $NAD^+$ as the cofactor. The determination of the Km values towards $\small{L}$-threonine (Km = $11.29{\mu}M$), ethanol ($222.5{\mu}M$), and n-butanol ($8.02{\mu}M$) also confirmed the enzyme as an LTDH. Furthermore, the LTDH was shown to be an ion-containing protein based on inductively coupled plasma-atomic emission spectrometry with an isoelectronic point of pH 5.4. Moreover, a circular dichroism analysis revealed that the metal ion was structurally and enzymatically essential, as its deprivation remarkably changed the ${\alpha}$-helix percentage (from 12.6% to 6.3%).

Blood biochemical parameters and organ development of brown layers fed reduced dietary protein levels in two rearing systems

  • Viana, Eduardo de Faria;Mello, Heloisa Helena de Carvalho;Carvalho, Fabyola Barros;Cafe, Marcos Barcellos;Leandro, Nadja Susana Mogyca;Arnhold, Emmanuel;Stringhini, Jose Henrique
    • Animal Bioscience
    • /
    • v.35 no.3
    • /
    • pp.444-452
    • /
    • 2022
  • Objective: An experiment was conducted to evaluate the effect of different levels of crude protein (CP) and two rearing systems (cage and floor), on blood parameters and digestive and reproductive organ development of brown laying hens. Methods: A total of 400 Hisex Brown laying hens between 30 and 45 weeks of age were distributed in a completely randomized design and a 2×4 factorial arrangement, with main effects including two rearing systems (cage and floor) and levels of CP (140, 150, 160, and 180 g/kg), in a total of eight treatments and five replicates of 10 birds each with initial body weight of 1,877 g (laying hen in cage) and 1,866 g (laying hens in floor). The parameters evaluated were plasma total protein, albumin, uric acid, total cholesterol, relative weights of oviduct, abdominal fat, liver, gizzard, crest and dewlap, length of small intestine and oviduct. Results: The blood parameters were similar in birds reared in cage and floor systems. The birds reared on the floor showed greater small intestine and oviduct weight (%) and lower liver and pancreas weight (%). A significant interaction was observed between factors for the relative gizzard, crest and dewlap weight, serum protein, uric acid, and total cholesterol (p<0.05). The diets with 140 g/kg CP resulted in lower serum protein and lower cholesterol in birds reared in floor system, while birds reared in cage system showed no effect of CP on both parameters. Birds reared in cage and fed with 140 and 150 g/kg CP presented lower uric acid. The group of birds reared in floor system fed 180 g/kg had greater uric acid. Conclusion: The dietary protein level can be reduced up to 140 g/kg for Hisex Brown hens (30 to 45 weeks of age) without an important effect on metabolic profile and organ development in both rearing systems.

Comparison of Size-Exclusion Chromatography and Flow Field-Flow Fractionation for Separation of Whey Proteins

  • Kang, Da-Young;Moon, Jae-Mi;Lee, Seung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1315-1320
    • /
    • 2011
  • Whey protein (WP) is a mixture of proteins, and is of high nutritional values. WP has become an important source of functional ingredients in various health-promoting foods. In this study, size-exclusion chromatography (SEC) and asymmetrical flow field-flow fractionation (AsFlFFF) were used for separation and analysis of whey proteins. It was found that a lab-prepared WP from raw milk is mostly of ${\beta}$-lactoglobulin with small amount of higher molecular weight components, while a commercial whey protein isolate (WPI) powder contains relatively larger amount of components other than ${\beta}$-lactoglobulin, including IgG and protein aggregates. Results suggest that AsFlFFF provides higher resolution for the major whey proteins than SEC in their normal operation conditions. AsFlFFF could differentiate the BSA and Albumin, despite a small difference in their molecular weights, and also was able to separate much smaller amount of aggregates from monomers. It is noted that SEC was able to show the presence of low molecular weight components other than the major whey proteins in the WP samples, which AsFlFFF could not show, probably due to the partial loss of those low molecular weight species through the membrane.

Antisense bcl-2 Treatment in Human Lung Cancer Cell Lines (사람 폐암세포주에서의 bcl-2 안티센스 처리에 의한 효과)

  • 김선미;정자영;오호정;손여원
    • Toxicological Research
    • /
    • v.18 no.4
    • /
    • pp.411-416
    • /
    • 2002
  • Apoptosis, or programmed cell death, is a genetically regulated pathway that is altered in many cancers. Overexpression of bcl-2 leads to resistance to apoptosis and promotes tumorigenesis. To determine the effect of bcl-2 antisense treatment in human lung cancer cell lines, a 20 mer full phosphorothioate oligonucleotide (ODN) targeted at the coding region of the bcl-2 mRNA was synthesized. Western blot analyses were used to examine bcl-2 protein level in five human non-small cell lung cancer (NSCLC) cell lines (NCI-H226, SK-MES-1 NCI-H358, NCI-H522 and NCI-Hl 299) and four human small cell lung cancer (SCLC) cell lines (NCI-H69, NCI-H4l7, HCC-2108 and SW2). Three out of five NSCLC (NCI-H226, SK-MES-1 and NCI-Hl 299) and all of SCLC cell lines expressed Bcl-2 protein. Treatment of these cell with antisense ODN for 48 hours reduced their viability and Bcl-2 protein level. As a conclusion, bcl-2 antisense treatment appears reduction of the Bcl-2 protein levels and cytotoxic effect including apoptosis in human lung cancer cell lines.

Characterization of the Small Cryptic Plasmid, pGD2, of Klebsiellia sp. KCL-2.

  • Yoo, Ju-Soon;Kim, Hae-Sun;Chung, Soo-Yeol;Lee, Young-Choon;Cho, Young-Soo;Choi, Yong-Lark
    • BMB Reports
    • /
    • v.34 no.6
    • /
    • pp.584-589
    • /
    • 2001
  • One of the cryptic plasmids from the oil degrading bacterium Klebsiella sp. KCL-2, the small plasmid pGD2, has been identified and characterized. This plasmid has a size of 3.6 kb with unknown functions. We constructed the recombinant plasmid pMGD2. The nucleotide sequences of the plasmid were determined and two open reading frames were detected. ORF1 encodes a replication initiator protein (RepA), which has a high degree of homology with the protein of ColE2 plasmid. The product encoded by ORF2 showed a high similarity with the transposase protein of IS5. IS5 is 1195 by long and contains an inverted terminal repetition of 16 bp with one mismatch. Stem-loop structures in the 5'untranslated region of the repA suggest that a putative gene, incA, is located in a complementary strand to the leader region of the repA mRNA.

  • PDF