• Title/Summary/Keyword: Small protein

Search Result 1,755, Processing Time 0.026 seconds

A small molecule approach to degrade RAS with EGFR repression is a potential therapy for KRAS mutation-driven colorectal cancer resistance to cetuximab

  • Lee, Sang-Kyu;Cho, Yong-Hee;Cha, Pu-Hyeon;Yoon, Jeong-Soo;Ro, Eun Ji;Jeong, Woo-Jeong;Park, Jieun;Kim, Hyuntae;Kim, Tae Il;Min, Do Sik;Han, Gyoonhee;Choi, Kang-Yell
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.12.1-12.12
    • /
    • 2018
  • Drugs targeting the epidermal growth factor receptor (EGFR), such as cetuximab and panitumumab, have been prescribed for metastatic colorectal cancer (CRC), but patients harboring KRAS mutations are insensitive to them and do not have an alternative drug to overcome the problem. The levels of ${\beta}$-catenin, EGFR, and RAS, especially mutant KRAS, are increased in CRC patient tissues due to mutations of adenomatous polyposis coli (APC), which occur in 90% of human CRCs. The increases in these proteins by APC loss synergistically promote tumorigenesis. Therefore, we tested KYA1797K, a recently identified small molecule that degrades both ${\beta}$-catenin and Ras via $GSK3{\beta}$ activation, and its capability to suppress the cetuximab resistance of KRAS-mutated CRC cells. KYA1797K suppressed the growth of tumor xenografts induced by CRC cells as well as tumor organoids derived from CRC patients having both APC and KRAS mutations. Lowering the levels of both ${\beta}$-catenin and RAS as well as EGFR via targeting the $Wnt/{\beta}$-catenin pathway is a therapeutic strategy for controlling CRC and other types of cancer with aberrantly activated the $Wnt/{\beta}$-catenin and EGFR-RAS pathways, including those with resistance to EGFR-targeting drugs attributed to KRAS mutations.

Chemically Induced Cellular Proteolysis: An Emerging Therapeutic Strategy for Undruggable Targets

  • Moon, Seonghyeon;Lee, Byung-Hoon
    • Molecules and Cells
    • /
    • v.41 no.11
    • /
    • pp.933-942
    • /
    • 2018
  • Traditionally, small-molecule or antibody-based therapies against human diseases have been designed to inhibit the enzymatic activity or compete for the ligand binding sites of pathological target proteins. Despite its demonstrated effectiveness, such as in cancer treatment, this approach is often limited by recurring drug resistance. More importantly, not all molecular targets are enzymes or receptors with druggable 'hot spots' that can be directly occupied by active site-directed inhibitors. Recently, a promising new paradigm has been created, in which small-molecule chemicals harness the naturally occurring protein quality control machinery of the ubiquitin-proteasome system to specifically eradicate disease-causing proteins in cells. Such 'chemically induced protein degradation' may provide unprecedented opportunities for targeting proteins that are inherently undruggable, such as structural scaffolds and other non-enzymatic molecules, for therapeutic purposes. This review focuses on surveying recent progress in developing E3-guided proteolysis-targeting chimeras (PROTACs) and small-molecule chemical modulators of deubiquitinating enzymes upstream of or on the proteasome.

High Expression of Bcl-2 Protein Predicts Favorable Outcome in Non-small Cell Lung Cancer: Evidence from a Systematic Review and Meta-analysis

  • Zhao, Xian-Da;He, Yu-Yu;Gao, Jun;Zhao, Chen;Zhang, Ling-Lin;Tian, Jing-Yuan;Chen, Hong-Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8861-8869
    • /
    • 2014
  • Background: The prognostic value of Bcl-2 protein expression in non-small cell lung cancer (NSCLC) is under debate. We therefore systematically reviewed the evidence for Bcl-2 protein effects on NSCLC survival to elucidate this issue. Materials and Methods: An electronic search in Pubmed and Embase complemented by manual searches in article references were conducted to identify eligible studies to evaluate the association between Bcl-2 protein expression and overall survival (OS) as well as disease free survival (DFS) of NSCLC patients. Combined hazard ratios (HRs) with corresponding 95% confidence intervals (95%CIs) were pooled using the random-effects model. Results: A total of 50 trials (including 52 cohorts) encompassing 7,765 patients were pooled in the meta-analysis regarding Bcl-2 expression and OS of NSCLC patients. High expression of Bcl-2 protein had a favorable impact (HR=0.76, 95%CI=0.67-0.86). In the group of Bcl-2 expression and DFS, 11 studies including 2,634 patients were included. The synthesized result indicated high expression of Bcl-2 protein might predict good DFS (HR=0.85, 95%CI=0.75-0.95). Conclusions: Our present meta-analysis demonstrated favorable prognostic values of Bcl-2 expression in patients with NSCLC. Further prospective trails are welcomed to validate the utility of assessing Bcl-2 in NSCLC patient management.

Expression of Connexin 43 and E-cadherin Protein and mRNA in Non-small Cell Lung Cancers in Chinese Patients

  • Zhao, Jun-Qiang;Sun, Fang-Jie;Liu, Shan-Shan;Yang, Jun;Wu, Yu-Quan;Li, Gui-Shan;Chen, Qing-Yong;Wang, Jia-Xiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.639-643
    • /
    • 2013
  • Aim: Connexin 43 (Cx43) and E-cadherin are important biomarkers related with cancer. Their expression at protein and mRNA levels was here investigated in 50 primary lung carcinoma tissues and 20 samples of adjacent normal tissue of Chinese patients with non-small cell lung cancer (NSCLC). Methods: Protein and mRNA expression were evaluated by ABC immunohistochemistry and RT-PCR. Results: (1) The positive expression rates of Cx43 and E-cadherin protein were higher in the adjacent normal tissues than those in the primary lung carcinoma tissues; (2) the positive expression rates of Cx43 and E-cadherin protein decreased with NSCLC progression; (3) the expression of E-cadherin protein was not related with the pathological type of NSCLC; and (4) the relative quantity of the Cx43 or E-cadherin mRNA expression was correlated with the the histological type, clinical stage, cancer cell differentiation and the lymph node metastasis. Conclusion: The data suggested that the Cx43 and E-cadherin are reduced with NSCLC progression, and might be important biomarkers for judging the metastasis and prognosis.

Immunocytochemical Localization of Storage Protein in Pea (Pisum sativum) Cotyledon

  • Yu, Seong-Cheol;Lee, Chang-Seob;Kim, Woo-Kap
    • Journal of Plant Biology
    • /
    • v.39 no.2
    • /
    • pp.123-126
    • /
    • 1996
  • The pattern of seed storage protein, vicilin, deposition and site of intracellular localization was examined in cotyledon cells of pea (Pisum sativum) seed using the immunocytochemical methods. The vicilin was confined to the cisternae fo the rough endoplasmic reticulum and dictyosome as well as protein granules newly formed in rough endoplasmic reticulum. Vacuolar protein deposites and protein bodies were also labelled by gold particles. After small protein bodies were formed in the rough endoplasmic reticulum, they were transported to large protein bodies and then fused together. Electron dense protein granule, elaborated in the dictyosome, appears to be transported from dictyosome to protein body. A few unlabelled protein granules seem to be accumulated in other type of proteins than vicilin.

  • PDF

Seasonal Changes in Concentrations of Proteins and Lipids in Growing Goat Oocytes

  • Sangha, G.K.;Bhatia, H.;Khera, K.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.36-40
    • /
    • 2007
  • Proteins and lipids not only provide a source of energy to the cell, but also play vital roles in modifying the physical properties and function of the biological membranes. In the present study, we investigated the biochemical constituents, viz. proteins and lipids, in growing oocytes of goat antral follicles during summer and winter seasons. Goat genitalia in phosphate buffered saline (pH 7.4) were brought to the laboratory within one hour of slaughter under aseptic conditions at $37^{\circ}C$. Oocytes were aspirated from normal small (<3 mm in diameter) and large (>3 mm) follicles and pooled for biochemical estimations. A significant increase in the amount of protein and lipid was observed with the growth of the oocyte. The amount of protein varied non-significantly with the season, while the amount of lipid varied significantly. The amounts of phospholipid, cholesterol, free fatty acid, and triglyceride increased with the growth of the oocyte, but no significant effect of season in these constituents was observed. Lysolecithin, sphingomyelin, and sterols were the polar lipids identified in both oocytes prepared from small follicles (small oocytes) as well as large follicles (large oocytes). In addition, the small oocytes also contained phosphatidyl serine, while large oocytes contained phosphatidyl glycerol phosphate and phosphatidyl inositol. Among non-polar lipids, triglycerides and long chain alcohols appear only in small oocytes and not in large oocytes. Monoglycerides, 1,2-diglycerides, 1,3-diglycerides and o-dialkyl glycerol ethers, fatty acids, fatty acid methyl esters, and wax esters were identified in both small and large oocytes. Information on biochemical composition of growing oocytes is relevant to oocyte and embryo competence, culture and cryopreservation.

Association of a Single Codon Deletion in Bone Morphogenetic Protein 15 Gene with Prolificacy in Small Tail Han Sheep

  • Guo, W.;Chu, M.X.;Deng, X.M.;Feng, J.D.;Li, Ning;Wu, Changxin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1491-1495
    • /
    • 2004
  • Small Tail Han Sheep has significant characteristics of high prolificacy and non-seasonal ovulatory activity and is an excellent local sheep breed in P. R. China. Recently a novel member of the transforming growth factor $\beta$ (TGF$\beta$) superfamily termed bone morphogenetic protein 15 (BMP15) was shown to be specifically expressed in oocytes and to be essential for female fertility. Therefore, BMP15 is a candidate gene for reproductive performance of Small Tail Han Sheep. The whole genomic nucleotide sequence of BMP15 gene in Small Tail Han Sheep was searched for polymorphisms by PCR-SSCP and direct sequencing, and only one polymorphism was found. The polymorphism was a result of a 3 base pair deletion, which eliminated a single Leu codon (CTT). The allelic frequencies for A (without deletion) and B (with a codon deletion) are 0.73 and 0.27 respectively. The effects of BMP15 genotype on litter size were evaluated using the least squares model. This indicated that there was a significant association between litter size of Small Tail Han Sheep and a deletion in BMP15 gene (p=0.02<0.05). Small Tail Han Sheep ewes with AA and AB genotype produce on average 0.5 and 0.3 more lambs per litter than those ewes with BB genotype.

Root Nodule Specific Proteins of Alnus hirsuta (물오리나무(Alnus hirsuta)의 뿌리혹 특이 단백질)

  • 안태인
    • Journal of Plant Biology
    • /
    • v.36 no.3
    • /
    • pp.301-304
    • /
    • 1993
  • Root nodule specific proteins of Alnus hirsuta were examined. SDS-PAGE pattern of the Alnus root nodule was simpler than that of soybean, showing five nodule specific proteins whose molecular weights were 48, 40, 36, 26 and 19 kD, respectively. Among them, 48 kD protein existed most abundantly and were composed of two subunits whose pI value were 4.0 and 4.3, respectively. The 48 kD protein seemed to be a heme containing protein based on reaction with diaminobenzidine. Although 19 kD protein was present in small amount, it was most similar to leghemoglobin in terms of its molecular weight.

  • PDF

Localization of Barley yellow dwarf virus Movement Protein Modulating Programmed Cell Death in Nicotiana benthamiana

  • Ju, Jiwon;Kim, Kangmin;Lee, Kui-Jae;Lee, Wang Hu;Ju, Ho-Jong
    • The Plant Pathology Journal
    • /
    • v.33 no.1
    • /
    • pp.53-65
    • /
    • 2017
  • Barley yellow dwarf virus (BYDV) belongs to Luteovirus and is limited only at phloem related tissues. An open reading frame (ORF) 4 of BYDV codes for the movement protein (MP) of BYDV gating plasmodesmata (PD) to facilitate virus movement. Like other Luteoviruses, ORF 4 of BYDV is embedded in the ORF3 but expressed from the different reading frame in leaky scanning manner. Although MP is a very important protein for systemic infection of BYDV, there was a little information. In this study, MP was characterized in terms of subcellular localization and programmed cell death (PCD). Gene of MP or its mutant (ΔMP) was expressed by Agroinfiltration method. MP was clearly localized at the nucleus and the PD, but ΔMP which was deleted distal N-terminus of MP showed no localization to PD exhibited the different target with original MP. In addition to PD localization, MP appeared associated with small granules in cytoplasm whereas ΔMP did not. MP associated with PD and small granules induced PCD, but ΔMP showed no association with PD and small granules did not exhibit PCD. Based on this study, the distal N-terminal region within MP is seemingly responsible for the localization of PD and the induction small granules and PCD induction. These results suggest that subcellular localization of BYDV MP may modulate the PCD in Nicotiana benthamiana.

Identification of Differentially Expressed Genes in Human Small Cell Lung Carcinoma Using Subtractive Hybridization

  • Ahn Seung-Ju;Choi Jae-Kyoung;Joo Young Mi;Lee Min-A;Choi Pyung-Rak;Lee Yeong-Mi;Kim Myong-Shin;Kim So-Young;Jeon Eun-Hee;Min Byung-In;Kim Chong-Rak
    • Biomedical Science Letters
    • /
    • v.10 no.3
    • /
    • pp.195-202
    • /
    • 2004
  • Lung cancer is a leading cause of cancer death worldwide; however, despite major advances in cancer treatment during the past two decades, the prognostic outcome of lung cancer patients has improved only minimally. This is largely due to the inadequacy of the traditional screening approach of diagnosis in lung cancer, which detects only well­established overt cancers and fails to identify precursor lesions in premalignant conditions of the bronchial tree. In recent years this situation has fundamentally changed with the identification of molecular abnormalities characteristic of premalignant changes; these concern tumour suppressor genes, loss of heterozygosity at crucial sites and activation of oncogenes. Basic knowledge at the molecular level has extremely important clinical implications with regard to early diagnosis, risk assessment and prevention, and therapeutic targets. In this study we used a 'cap-finder' subtractive hybridization method, 'long distance' polymerase chain reaction (PCR), streptavidin magnetic beads mediated subtraction, and spin column chromatography to detect differential expression genes of human small cell lung carcinoma. We have now isolated ninety two genes that expressed differentially in the human small cell lung carcinoma cells and analyzed of 12 clones with sequencing, nine cDNAs include tapasin (NGS-17) mRNA, BC200 alpha scRNA, chromosome 12q24 PAC RPCI3-462E2, protein phosphatase 1 (PPPICA), translocation protein 1 (TLOC1), ribosomal protein S24 (RPS24) mRNA, protein phosphatase (PPEF2), cathepsin Z, MDM2 gene and three novel genes. They may be oncogenesis­related proteins.

  • PDF