• Title/Summary/Keyword: Small protein

Search Result 1,755, Processing Time 0.026 seconds

Physicochemical Characteristics of Silky Fowl(Gallus domesticus var. silkies) (백봉오골계육의 이화학적 특성)

  • Cho, Chae-Min;Park, Chung-Kil;Lee, Min-Young;Lew, In-Deok
    • Food Science of Animal Resources
    • /
    • v.26 no.3
    • /
    • pp.306-314
    • /
    • 2006
  • In this study, the anatomic characteristics and the contents of nutritional ingredients and minerals of silky fowl and yeonsan ogolgye was investigated. Silky fowl is covered with white silky feather. There is a pinch of vertical white tassel on peak of the head, especially a silky fowl cock. The crown of a silky fowl has a nickname of phoenix crown, the crown of a cock is mostly like a rose, while that of a hen like strawberry or mulberry. The ear of silky fowl is mostly peacock green(Light blue turquoise), bronze for a small part. Peacock green is most common for Silky Fowl with a age of $60{\sim}150$ days, over the age of 150 days, the peacock green will be gradually replaced by purplish red. Beaks are leaden blue, short and stout while the face is smooth and fine. The lower jaw of silky fowl has comparatively long tiny hair, similar to beard. The two legs of silky fowl are covered with a handful of feather, or known as 'Putting on trousers'. Each leg of silky fowl has five talons. The whole skin, eyes, mouth, talons of silky fowl are grey black The bone and marrow of silky fowl are light black the periosteum is black. The whole meat, internal organs and abdominal fat of sillry fowl aye black the heart and leg meat are light black. Silky fowl meat had lower moisture and lipids content, but higher Ash and protein content than meats of yeosan ogolgye and general chickens. For mineral contents of leg muscle and breast muscle, silky fowl had higher contents of phosphorus (P), iron (Fe), potassium (K), zinc (Zn) than those of yeonsan ogolgye, while yeonsan ogolgye had higher contents of calcium (Ca) than that of silky fowl. The contents of iron (Fe) and zinc (Zn) is higher in leg muscle than in breast muscle for the silky fowl and yeonsan ogolgye. Leg muscle of silky fowl contains a lot of iron (Fe), about 4 times as much as that of leg muscle of yeonsan ogolgye. For the silky fowl and the yeonsan ogolgye, leg muscles contains a lot of zinc (Zn), about 5 times, 4 times respectively as much as that of breast muscle.

Role of Oxygen Free Radical in the Expression of Interleukin-8 and Interleukin-$1{\beta}$ Gene in Mononuclear Phagocytic Cells (내독소에 의한 말초혈액 단핵구의 IL-8 및 IL-$1{\beta}$ 유전자 발현에서 산소기 역할에 관한 연구)

  • Kang, Min-Jong;Kim, Jae-Yeol;Park, Jae-Seok;Lee, Seung-Joon;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.6
    • /
    • pp.862-870
    • /
    • 1995
  • Background: Oxygen free radicals have generally been considered as cytotoxic agents. On the other hand, recent results suggest that small nontoxic amounts of these radicals may act a role in intracellular signal transduction pathway and many efforts to reveal the role of these radicals as secondary messengers have been made. It is evident that the oxygen radicals are released by various cell types in response to extracellular stimuli including LPS, TNF, IL-1 and phorbol esters, all of which translocate the transcription factor $NF{\kappa}B$ from cytoplasm to nucleus by releasing an inhibitory protein subunit, $I{\kappa}B$. Activation of $NF{\kappa}B$ is mimicked by exposure to mild oxidant stress, and inhibited by agents that remove oxygen radicals. It means the cytoplasmic form of the inducible tanscription factor $NF{\kappa}B$ might provide a physiologically important target for oxygen radicals. At the same time, it is well known that LPS induces the release of oxygen radicals in neutrophil with the activation of $NF{\kappa}B$. From above facts, we can assume the expression of IL-8 and IL-$1{\beta}$ gene by LPS stimulation may occur through the activation of $NF{\kappa}B$, which is mediated through the release of $I{\kappa}B$ by increasing amounts of oxygen radicals. But definitive evidence is lacking about the role of oxygen free radicals in the expression of IL-8 and IL-$1{\beta}$ gene in mononuclear phagocytic cells. We conducted a study to determine whether oxygen radicals act a role in the expression of IL-8 and IL-$1{\beta}$ gene in mononuclear phagocytic cells. Method: Human peripheral blood monocytes were isolated from healthy volunteers. Time and dose relationship of $H_2O_2$-induced IL-8 and IL-$1{\beta}$ mRNA expression was observed by Northern blot analysis. To evaluate the role of oxygen radicals in the expression of IL-8 and IL-$1{\beta}$ mRNA by LPS stimulation, pretreatment of various antioxiants including PDTC, TMTU, NAC, ME, Desferrioxamine were done and Northern blot analysis for IL-8 and IL-$1{\beta}$ mRNA was performed. Results: In PBMC, dose and time dependent expression of IL-8 and IL-$1{\beta}$ mRNA by exogenous $H_2O_2$ was not observed. But various antioxidants suppressed the expression of LPS-induced IL-8 and IL-$1{\beta}$ mRNA expression of PBMC and the suppressive activity was most prominant when the pretreatment was done with TMTU. Conclusion: Oxygen free radical may have some role in the expression of IL-8 and IL-$1{\beta}$ mRNA of PBMC but that radical might not be $H_2O_2$.

  • PDF

Growth Efficiency, Carcass Quality Characteristics and Profitability of 'High'-Market Weight Pigs ('고체중' 출하돈의 성장효율, 도체 품질 특성 및 수익성)

  • Park, M.J.;Ha, D.M.;Shin, H.W.;Lee, S.H.;Kim, W.K.;Ha, S.H.;Yang, H.S.;Jeong, J.Y.;Joo, S.T.;Lee, C.Y.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.459-470
    • /
    • 2007
  • Domestically, finishing pigs are marketed at 110 kg on an average. However, it is thought to be feasible to increase the market weight to 120kg or greater without decreasing the carcass quality, because most domestic pigs for pork production have descended from lean-type lineages. The present study was undertaken to investigate the growth efficiency and profitability of ‘high’-market wt pigs and the physicochemical characteristics and consumers' acceptability of the high-wt carcass. A total of 96 (Yorkshire × Landrace) × Duroc-crossbred gilts and barrows were fed a finisher diet ad laibtum in 16 pens beginning from 90-kg BW, after which the animals were slaughtered at 110kg (control) or ‘high’ market wt (135 and 125kg in gilts & barrows, respectively) and their carcasses were analyzed. Average daily gain and gain:feed did not differ between the two sex or market wt groups, whereas average daily feed intake was greater in the barrow and high market wt groups than in the gilt and 110-kg market wt groups, respectively(P<0.01). Backfat thickness of the high-market wt gilts and barrows corrected for 135 and 125-kg live wt, which were 23.7 and 22.5 mm, respectively, were greater (P<0.01) than their corresponding 110-kg counterparts(19.7 & 21.1 mm). Percentages of the trimmed primal cuts per total trimmed lean (w/w), except for that of loin, differed statistically (P<0.05) between two sex or market wt groups, but their numerical differences were rather small. Crude protein content of the loin was greater in the high vs. 110-kg market group (P<0.01), but crude fat and moisture contents and other physicochemical characteristics including the color of this primal cut were not different between the two sexes or market weights. Aroma, marbling and overall acceptability scores were greater in the high vs. 110-kg market wt group in sensory evaluation for fresh loin (P<0.01); however, overall acceptabilities for cooked loin, belly and ham were not different between the two market wt groups. Marginal profits of the 135- and 125-kg high-market wt gilt and barrow relative to their corresponding 110-kg ones were approximately -35,000 and 3,500 wons per head under the current carcass grading standard and price. However, if it had not been for the upper wt limits for the A- and B-grade carcasses, marginal profits of the high market wt gilt and barrow would have amounted to 22,000 and 11,000 wons per head, respectively. In summary, 120~125-kg market pigs are likely to meet the consumers' preference better than the 110-kg ones and also bring a profit equal to or slightly greater than that of the latter even under the current carcass grading standard. Moreover, if only the upper wt limits of the A- & B-grade carcasses were removed or increased to accommodate the high-wt carcass, the optimum market weights for the gilt and barrow would fall upon their target weights of the present study, i.e. 135 and 125 kg, respectively.

Studies on the Meat Production and Woolskin Processing of Sheep and Korean Native Goats for Increasing Farm Income as a Family Subsidiary Work (농가부업(農家副業)의 소득향상(所得向上)을 위한 양육생산(羊肉生産) 및 모피가공(毛皮加工)에 관(關)한 연구(硏究))

  • Kwon, Soon-Ki;Kim, Jong-Woo;Han, Sung-Wook;Lee, Kyu Seung
    • Korean Journal of Agricultural Science
    • /
    • v.5 no.2
    • /
    • pp.93-114
    • /
    • 1978
  • The purpose of the study was to find out possible ways for increasing farm income through the sheep and Korean native goats farming, and to investigate meat productivity, wool productivity; woolskin utility, physiological characteristics and correlation between economical college animal farm of the Chungnam National University and sample farms in the suburbs of Dae jeon City were selected for feeding 20 heads of Corriedale wethers and another 20 heads Korean native kids as research materials for the periods of 5th May-26th November, 1977. The data such as growth rate, carcass, viscera weight, blood picture and plamsa components, hebage intake and economic traits were obtained and analysed. The result of the study are summarized as follows: 1. Meat production and quality 1) After 196days of feeding, the body weight of sheep and Korean native goats was increased by two times of those at the beginning of the trial, i.e. 20kg and 8kg respectively. 2) There was no significance of growth rates of sheep in housing and grazing. 3) The growth rate of Korean native goats were excellent at the mountainous areas of Gong ju-Gun where infectious diseases were not found 4) Accroding to the body measurements of 18-month-old sheep, percentages of hip height, body length, rump length, chest depth, chest width, hip width, chest girth and forearm circumference to the withers height were 103,%, 104%, 33%, 44%, 31%, 23%, 135% and 15% respectively, and those of hip height, body length, chest depth and chest girth of 8-month-old native goats to the withers height were 106%, 109%, 46% and 122,% respecitively. As a result, it was found that the percentage of hip height, body length and chest depth of Korean native goats were higher than those of sheep while that of the chest girth of goats was lower. 5) In the carcass data, 47, $52{\pm}2.27%$ of carcass percentage, $34.61{\pm}1.62%$ of lean meat, $26.07{\pm}2.51%$ of viscera, $9.75{\pm}1.4%$ of bone, and $20.95%{\pm}2.14%$ of woolskin for sheep, and $45.58{\pm}5.63%$ of carcass percentage, $27.62{\p}3.81%$ of meat, $34.86{\pm}4.16%$ of viscera, $11.66{\pm}1.83%$ of bone, $3.63{\pm}1.61%$ of skull and $9.26{\pm}2.41%$ of woolskin for native goats were obtained. 6) The contents of moisture, crude protein, crude fat and crude ash in native goat meat were much similar in both plots of housing and grazing. It was, however, known that the contents of moisture and protein were higher in grazinrg than in housing, while fat content was lower in grazing plots. 7) The weights of visceral organs shown similar tendency for both of sheep and native goats. For the weights of liver, heart, kidney and spleen, significance was not reconized among the treatments. Those of rumen, reticulum, small and large intestine were heavier in grazing than in housing, while the amount of visceral fat was heavier in housing. 2. Wool productivity and woolskin 1) The wool production of sheep for 7 months was $3.88{\pm}1.02kg$, and wool percentage, staple length, straighten length, wool growth per day and number of crimps were $9.27{\pm}1.48%$, 8. $47{\pm}1.00cm$, $10.63{\pm}0.99cm$, $0.40{\pm}0.04cm$ and $2.78{\pm}0.40$ respecitively. 2) The tensile strength and tear strength of woolskin treated by alum tanning were highest on the skin obtained from rump, i.e. $1,351kg/mm^2$ and $2,252kg/mm^2$ respectively, and they are in order of loin and shoulder. 3. Utilization and improvement of pasture. 1) The difference of herbage intake of native goats was not recognized between grazing and tethering, but the intake in the afternoon was s lightly higher than that in the morning. However the hervage intake of sheep was superior in grazing and in the afternoon. 2) The cultivation effect was lower in the native goat plots due to their cultivation abilities, in other words, the establishment rates of pasture by hoof cultivation were 60.25% in the goat plots and 77.35% in the sheep plots. 4. Correlation among economical traits. 1) The correlation between live weight of sheep and daily gain was higher. On the other hand, the correlation between other traits was not significant except that live weight, daily gain and lean meat percentage to the length of thoracic vertebrae. The live weight of native goats and meat production were highly correlated, and high correlation was also found between weights of carcass and meat. However, negative correlation was shown between viscera weight and live weight as well as daily gain. 2) The correlatoin between fleece weight of sheep and other traits such as live weight, daily gain and fleece percentage is very high at the 1% siginficant level, and this means that rapid-growth individuals can produce much fleece. 3) The correlation between the factors such as weights of live body, lean meat and viscera of sheep and body measurements, i. e. chest girth and body length was highest, and weights, of carcass and lean meat was highly correlated to chest width and depth. It will be therefore reasonable that the meat productivity estimates will have to be made on the basis of chest girth and body length. The meat production traits of native goats were highly correlated to the most of body measurement data, and the correlation coefficient between chest girth and weights of live body, carcass, lean meat and bone percentage was very high, i. e. 0.992-0.974 in particular. The correlations of meat production traits to chest depth, forearm circumference, body length were 0.759-0.911, 0.759-0.909 and 0.708-0.872 respectively. Therefore, the meat production of native goats will have to be estimated on the basis of chest data. 5. Blood picture and plasma components. 1) The number of erythrocyte and MCHC of native goats were $12.93{\times}10^6/mm^3$ and 36.14%, and those of sheep were $10.68{\times}10^6/mm^3$ and 36.26 respectively. The values of native goats were significantly higher than those of sheep. 2) The hemoglobin concentration, PVC, MCV and MCR of native goats were 10.92 g/100ml, $23.40{\mu}^3$ and 10.94 pg, and those of sheep were 11.73 g/100ml, 36.25 ml/100ml, $33.97{\mu}^3$ and 30.2 ml/100ml 8.43 pg respectively. The values of native goats were significantly lower those of sheep. 3) The number of leukocytes of native goats was significantly higher than that of sheep, that is, $11.64{\times}10^3/mm^3$ in native goats and $9.32{\times}10^3/mm^3$ in sheep. 4) In differential count of leukocyte, neutrophil was significantly high in native goats while lympocyte in sheep. On the other hand, the basophil, eosinophil and monocyte were not significant between native goats and sheep. 5) The amounts of total protein and glucose in the plasma of native goats were 6.2g/100ml and 53.6mg/100ml, and those of sheep were 5.6g/100ml and 45.7mg/100ml, which means that the values of native goats were significantly higher that those of sheep. The amount of total-lipid of native goats(127.6mg/100ml) was significantly than that of sheep(149.6mg/100ml). 6) The amount of non-protein nitrogen, cholesterol, Ca, P, K, Na and Cl were not different between native goats and sheep. 6. Economic analysis. 1) The gross revenue of a farm which fed native goats and sheep was 4,000won per head and the optimum size for feeding them in a farm as a subsidiary work is 5-10 heads. 2) Since there was no difference between housing and grazing, they can be fed in group for farm's subsidiary work. 3) They can be also fed by youths and house wives in the suburbs of cities, because labour requirement is estimated as only two hours per days for feeding 5 heads of native goats and sheep.

  • PDF

Studies on the Effects of Caponization and Various Hormone Treatment on the Meat Production and Quality in Growing Chicken (닭에 있어서 거세(去勢) 및 Hormone 처리(處理)가 산육성(産肉性) 및 육질(肉質)에 미치는 영향(影響)에 관한 연구(硏究))

  • Ra, Kwang Yon
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.1
    • /
    • pp.9-47
    • /
    • 1975
  • These experiments were caried out to study the effects of caponization and various hormone treatments upon meat production and improvement of meat quality of growing chicken. Sixtyseven days old 160 New Hampshire cockerels were treated and growth rate, carcass yield, change of weight of individual organs, meat composition and change of amino acid were measured and analysed. Otherwise change of testis and thyroid gland by hormone treatment were investigated histologically. The results obtained were as follows. 1. The effectst of caponization and hormone treatment upon meat production were; 1) Body weight of cockerels in D. E. S. group without caponization was increased. upon 96.86% than initial period and A. C. T. H. group was 104.22% but other groups and all carponization groups were lighter than those of control group. 2) Weekly body gain of D. E. S. group without caponization was best showing the significance (102.69 g) and the group with caponization were lower than those groups without caponization. 3) Carcass yield was best in Testo. group without caponization (831.2 g) and the group with caponization were lower than the group without caponization. 4) Carcass rate was highest in A. C. T. H. group with caponization and (67.22%) lowest in Testo. group without caponization (63.37%), but any significance was not recognized. 2. The effects of caponizatitn and hormone treatments upon the coposition of meat and amino acids were; 1) Any significance was not recognized between treated and untreated group about change of moisture, crude protein, crude ash and glycogen contents in meat. 2) Fat co tent in muscle in the all treated groups were higher than that of control group. 3) Extracts of group without caponization were higher than those of groups with caponization. 4) Lysin contents were highest in D. E. S. group with caponization (11. 12/ 16.0 g N) and generelly Testo. group was lower compared with D. E. S. group. 5) Histidine and Arginine contents were higher in the groups with caponization than without caponization. 6) Aspartic acid content were higher in D. E. S. group and A. C. T. H. group without depend on caponization. 7) Treonine content was higher in Testo. group without caponization and in the group with caponization and without hormone treatment compared with those of control group without caponization. 8) Serine content was decreased in the group with caponization and increased by D. E. S. and A. C. T. H treatment groups and glutamic acid was also decreased in Testo. group with out caponization. 9) Cystine content was decreased by Testo. treatment and was not appeared in Testo. group without caponization. 10) Valine content was lower in control group with caponization but significance was not recognized between other groups and control group without caponization. 11) Glycine, Alanine, Methionine. Isoleucine, Leucine, Thyrosine and Phenylalanine contents were not so difference between hormone treated groups and control group without caponization. 3. The effects of caponization and hormone treatment upon the change of organs were: 1) The weight of all organs were heaviest in D. E. S. group without caponization (18.5g) and lightest in A. C. T. H. group without caponization (155. 3g) but no significance was recognized between hormone treatment groups. 2) Heart weight was heaviest in D. E. S. group without caponization (7.46 g) and lightest in Testo. group without caponization (5.95 g). 3) Liver weight was heaviest in D. E. S. group without caponization(32.89g) and lightest in hormone untreated group with caponization(29.66g). Significance was not recognized. 4) Spleen weight was heaivest in Testo. group with caponization (3.22 g) and lightest in D. E. S. group without caponization(2.00g) in contrast with the other groups. High significance was recognized among the groups (P<0.01). 5) Cloacal thymus weight was lightest in D. E. S. group with or without caponization compared with control group without caponization. High significance was recognized among the groups. 6) Muscle fat content was not appeared in A. C. T. H. group with caponization, but it was highly increased in D. E. S. group with or without caponization. 7) Testis weight was lightest in D. E. S. group (0.38g) compared with control group (2.66g). Significance was recognized among the groups. 8) Large intestine, small intestine and cecum weight and length were heavier and longer in D. E. S. group without caponization and control group without caponization was lighter than those of hormone treated groups. 4. The effects of caponization and hormone treatment upon histological change of testis and thyroid gland: 1) The histological change of testis was significantly appeared in D. E. S. group that seminifirous tubles was slowly atrophied, the funtion of spernatogenesis was ceased, spermatocyte was changed as degeneration by pyknosis and karyorrhexis and interstitial cell was also atrophied, but in Testo. and A. C. T. H. group were similar as control group. 2) The histological change of thyroid gland in Testo. and A. C. T. H. groups without caponization were similar to that of control group without caponization, but in D. E. S. group without caponization, was changed squamously. Thyroid gland of the groups with caponization, epithelium of was atrophied and changed squamously as degeneration by pyknosis and karyorrhexis and the function of thyroid gland was slowly ceased in colloid and in hormone treated group with caponization.

  • PDF