El-Hameed, Afaf M. Abd;Attia, Gamal F.;Abdel-Aziz, Yehia
Journal of Astronomy and Space Sciences
/
v.34
no.1
/
pp.31-35
/
2017
Optical observation is one of the most common techniques used for characterizing the physical properties of unknown objects and debris in space. This research presents measurements and properties of the new object 96019 from ground-based optical methods. Optical observations of this small object were performed using a charge-coupled device (CCD) camera and the Santel-500 telescope at the Zvenigorod Observatory. The orbital elements and physical properties of this object, such as area-to-mass ratio, have been determined. The results show that this small object has a low area-to-mass ratio, between 0.009 and $0.12m^2/kg$. The light curve of object 96019 is given: Over the time intervals, variations in brightness are analyzed and the maximum brightness was found to be 12.4 magnitudes. The observational results show that, this object brightens by about three magnitudes over a time span of three minutes. Based on these observations, the characteristics and physical properties of this object are discussed.
Journal of the Korean Society of Industry Convergence
/
v.27
no.4_2
/
pp.1001-1007
/
2024
Recent deep learning algorithms for object detection in real-time play a crucial role in various applications such as autonomous driving, traffic monitoring, health care, and water quality monitoring. The size of small objects, in particular, significantly impacts the accuracy of detection models. However, data containing small objects can lead to underfitting issues in models. Therefore, this study developed a deep learning model capable of quickly detecting small objects to provide more accurate predictions. The RE-SOD (Residual block based Small Object Detector) developed in this research enhances the detection performance for small objects by using RGB separation preprocessing and residual blocks. The model achieved an accuracy of 1.0 in image classification and an mAP50-95 score of 0.944 in object detection. The performance of this model was validated by comparing it with real-time detection models such as YOLOv5, YOLOv7, and YOLOv8.
Object segmentation is a challenging task in image processing and computer vision. In this paper, we present a visual attention based segmentation method to segment small sized interesting objects in natural images. Different from the traditional methods, we first search the region of interest by using our novel saliency-based method, which is mainly based on band-pass filtering, to obtain the appropriate frequency. Secondly, we applied the Gaussian Mixture Model (GMM) to locate the object region. By incorporating the visual attention analysis into object segmentation, our proposed approach is able to narrow the search region for object segmentation, so that the accuracy is increased and the computational complexity is reduced. The experimental results indicate that our proposed approach is efficient for object segmentation in natural images, especially for small objects. Our proposed method significantly outperforms traditional GMM based segmentation.
Recently, small-animal imaging technology has been rapidly developed for longitudinal screening of laboratory animals such as mice and rats. One of newly developed imaging modalities for small animals is an x-ray micro-CT (computed tomography). We have developed two types of x-ray micro-CT systems for small animal imaging. Both systems use flat-panel x-ray detectors and micro-focus x-ray sources to obtain high spatial resolution of $10{\mu}m$. In spite of the relatively large field-of-view (FOV) of flat-panel detectors, the spatial resolution in the whole-body imaging of rats should be sacrificed down to the order of $100{\mu}m$ due to the limited number of x-ray detector pixels. Though the spatial resolution of cone-beam CTs can be improved by moving an object toward an x-ray source, the FOV should be reduced and the object size is also limited. To overcome the limitation of the object size and resolution, we introduce zoom-in micro-tomography for high-resolution imaging of a local region-of-interest (ROI) inside a large object. For zoom-in imaging, we use two kinds of projection data in combination, one from a full FOV scan of the whole object and the other from a limited FOV scan of the ROI. Both of our micro-CT systems have zoom-in micro-tomography capability. One of both is a micro-CT system with a fixed gantry mounted with an x-ray source and a detector. An imaged object is laid on a rotating table between a source and a detector. The other micro-CT system has a rotating gantry with a fixed object table, which makes whole scans without rotating an object. In this paper, we report the results of in vivo small animal study using the developed micro-CTs.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.14
no.12
/
pp.4795-4815
/
2020
Drone detection can be considered as a specific sort of small object detection, which has always been a challenge because of its small size and few features. For improving the detection rate of drones, we design a Deeper SSD network, which uses large-scale input image and deeper convolutional network to obtain more features that benefit small object classification. At the same time, in order to improve object classification performance, we implemented the up-sampling modules to increase the number of features for the low-level feature map. In addition, in order to improve object location performance, we adopted the down-sampling modules so that the context information can be used by the high-level feature map directly. Our proposed Deeper SSD and its variants are successfully applied to the self-designed drone datasets. Our experiments demonstrate the effectiveness of the Deeper SSD and its variants, which are useful to small drone's detection and recognition. These proposed methods can also detect small and large objects simultaneously.
Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
International conference on construction engineering and project management
/
2022.06a
/
pp.1243-1244
/
2022
In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.
IEIE Transactions on Smart Processing and Computing
/
v.3
no.2
/
pp.59-64
/
2014
This paper presents a method for estimating the bounding volume for image-based 3D object reconstruction. The bounding volume of an object is a three-dimensional space where the object is expected to exist, and the size of the bounding volume strongly affects the resolution of the reconstructed geometry. Therefore, the size of a bounding volume should be as small as possible while it encloses an actual object. To this end, the proposed method uses a set of silhouettes of an object and generates a point cloud using a point filter. A bounding volume is then determined as the minimum sphere that encloses the point cloud. The experimental results show that the proposed method generates a bounding volume that encloses an actual object as small as possible.
Kim, Eunchan;Lee, Jinyoung;Jo, Hyunjik;Na, Kwangtek;Moon, Eunsook;Gweon, Gahgene;Yoo, Byungjoon;Kyung, Yeunwoong
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.8
/
pp.2688-2703
/
2022
Research on the advanced detection of harmful objects in airport cargo for passenger safety against terrorism has increased recently. However, because associated studies are primarily focused on the detection of relatively large objects, research on the detection of small objects is lacking, and the detection performance for small objects has remained considerably low. Here, we verified the limitations of existing research on object detection and developed a new model called the Small Hazardous Object detection enhanced and reconstructed Model based on the You Only Look Once version 5 (YOLOv5) algorithm to overcome these limitations. We also examined the performance of the proposed model through different experiments based on YOLOv5, a recently launched object detection model. The detection performance of our model was found to be enhanced by 0.3 in terms of the mean average precision (mAP) index and 1.1 in terms of mAP (.5:.95) with respect to the YOLOv5 model. The proposed model is especially useful for the detection of small objects of different types in overlapping environments where objects of different sizes are densely packed. The contributions of the study are reconstructed layers for the Small Hazardous Object detection enhanced and reconstructed Model based on YOLOv5 and the non-requirement of data preprocessing for immediate industrial application without any performance degradation.
One of the subjects in clouds' structure and development is small scale structure of interstellar cloud. The possibility of AU scale structure (Marscher et al. 1993; Moore & Marscher 1995; Roy et al. 2012) is discussed, and this small scale structure is considered as the result of hydrogen volume density (Moore & Marscher 1995), or small-scale chemical and other inhomogeneities (Liszt & Lucas 2000). In order to study this subject with emission line, extremely high resolution is mandatory by VLBI system. However, the alternative method could be observing the absorption line of interstellar cloud on the continuum object. In this case, the resolution would be restricted to the size of the continuum object, if the size of the object is smaller than the resolution of a used telescope. We observed the previous researchers' three objects (BLLAC, NRAO150, B0528+138), whose spectrums are changed from 1993 to 1998 (Liszt & Lucas 2000), with KVN. Through KVN observation, we found the changes of optical depth spectrum compared with the previous spectrums. We will discuss the optical depth spectrum variation by time variation and the meaning of it.
Kim, Dong-Gi;Lee, Seong-Gyu;Lee, Moon-Wook;Kang, E-Sok
Transactions of the Korean Society of Mechanical Engineers A
/
v.28
no.2
/
pp.125-132
/
2004
In this paper, we propose a new two-stage segmentation method for the effective object recognition which uses region-growing algorithm and k-means clustering method. At first, an image is segmented into many small regions via region growing algorithm. And then the segmented small regions are merged in several regions so that the regions of an object may be included in the same region using typical k-means clustering method. This paper also establishes similarity measurement which is useful for object recognition in an image. Similarity is measured by fuzzy system whose input variables are compactness, magnitude of biasness and orientation of biasness of the object image, which are geometrical features of the object. To verify the effectiveness of the proposed two-stage segmentation method and similarity measurement, experiments for object recognition were made and the results show that they are applicable to object recognition under normal circumstance as well as under abnormal circumstance of being.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.