• 제목/요약/키워드: Small mobile robot

검색결과 127건 처리시간 0.026초

임상병리검사를 위한 모바일 에이전트 기반의 바이오로봇 시스템 개발 (Development of BioRobot System Based on Mobile Agent for Clinical Laboratory)

  • 최병준;진성문;신승훈;구자춘;김민철;김진현;손웅희;안기탁;정완균;최혁렬
    • 로봇학회논문지
    • /
    • 제2권4호
    • /
    • pp.317-326
    • /
    • 2007
  • Recently, robotic automation in clinical laboratory becomes of keen interest as a fusion of bio and robotic technology. In this paper, we present a new robotic platform for clinical tests suitable for small or medium sized laboratories using mobile robots. The mobile robot called Mobile Agent is designed as transfer system of blood samples, reagents, microplates, and any instruments. Also, the developed mobile agent can perform diverse tests simultaneously based on its cooperative and distributed ability. The driving circuits for the mobile agent are embedded in the robot, and each mobile agent communicates with other agents by using Bluetooth communication. The RFID system is used to recognize patient information. Also, the magnetic hall sensor is embedded to remove and compensate the cumulated error of locomotion at the bottom of mobile agent. The proposed mobile agent can be easily used for various applications because it is designed to be compatible with general software development tools. The Mobile agents are manufactured, and feasibility of the robot and localization of the agents using magnetic hall sensor are validated by preliminary experiments.

  • PDF

모바일 센서 네트워크를 위한 에너지 효율적이고 경제적인 소형 이동 로봇의 개발 (Energy-Effective Low-Cost Small Mobile Robot Implementation for Mobile Sensor Network)

  • 김홍준;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.284-294
    • /
    • 2008
  • In this paper, we describe an implementation of small mobile robot that can be used at research and application of mobile sensor networking. This robot that will constitute the sensor network, as a platform of multi-robot system for each to be used as sensor node, has to satisfy restrictions in many aspects in order to perform sensing, communication protocol, and application algorithms. First, the platform must be designed with a robust structure and low power consumption since its maintenance after deployment is difficult. Second, it must have flexibility and modularity to be used effectively in any structure so that it can be used in various applications. Third, it must support the technique of wireless network for ubiquitous computing environment. At last, to let many nodes be scattered, it must be cost-effective and small. Considering the above restrictions of the mobile platform for sensor network, we designed and implemented robots control the current of actuator by using additional circuit for power efficiency. And we chose MSP430 as MCU, CC2420 as RF transceiver, and etc, that have the strength in the aspect of power. For flexibility and modularity, the platform has expansion ports. The results of experiments are described to show that this robot can act as sensor node by RF communication process with Zigbee standard protocol, execute the navigation process with simple obstacle avoidance and the moving action with RSSI(Received Signal Strength Indicator), operate at low-power, and be made with approx. $100.

Control of mobile robot system with wireless transmission of image information.

  • Jeong, Sang-Hoon;Kwak, Jae-Hyuk;Lim, Joon-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.908-911
    • /
    • 2004
  • There are various researches on mobile robot systems. Connection method between server and client of mobile robot system is one of them. In the case of mobile robot system, when connection method between server and client is wireless than wire, applications may be expanded. Also in remote monitoring environment using mobile robot system, we are interested in an effective transmission of the image information between server and client. In this paper, Bluetooth is used for connection method between server and client. One of the major applications of Bluetooth is the cable replacement for mobile and peripheral devices. Using Bluetooth, we propose the control method of mobile robot system. Bluetooth offers fast and reliable transmissions of both voice and data over the globally available 2.4GHz ISM (Industrial, Scientific and Medical) band. It has the advantage of small size, low power and low cost. It has the disadvantage of limited range and limited bandwidth. Also in order to transfer effectively image information between remote site(server) and mobile robot system(client) using Bluetooth, we applied to MPEG-2 and MPEG-4 image compression techniques and the results are compared with each other.

  • PDF

기구학적 여유 자유도를 지니는 전방향 모바일 로봇에 관한 연구 (Study of an Omni-directional Mobile Robot with Kinematic Redundancy)

  • 정의정;이병주;김희국
    • 로봇학회논문지
    • /
    • 제3권4호
    • /
    • pp.338-344
    • /
    • 2008
  • Most omni-directional mobile robots have to change their trajectory for avoiding obstacles regardless of the size of the obstacles. However, an omni-directional mobile robot having kinematic redundancy can maintain the trajectory while the robot avoids small obstacles. This works deals with the kinematic modeling and motion planning of an omni-directional mobile robot with kinematic redundancy. This robot consists of three wheel mechanisms. Each wheel mechanism is modeled as having four joints, while only three joints are necessary for creating the omni-directional motion. Thus, each chain has one kinematic redundancy. Two types of wheel mechanisms are compared and its kinematic modeling is introduced. Finally, several motion planning algorithms using the kinematic redundancy are investigated. The usefulness of this robot is shown through experiment.

  • PDF

원전 이동감시 및 방사선 측정용 원격조종 로봇 개발 (Development of a remote controlled mobile robot system for monitoring nuclear power plant)

  • 구관모;이범희;우희곤
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.511-515
    • /
    • 1996
  • A remote controlled mobile robot system has been developed and tested to monitor the radiation area in the nuclear power plant. The mobile robot system operates according to car-driving-like commands and is capable of radiation measurement and visual inspection in unmanned situations under radiation. The robot system is equipped with a radiation sensor and two cameras with appropriate illumination set-ups. The camera with auto-focus function and 8-times zoom lens is mounted on the pan/tilt rotational base and the other is mounted on the front panel of the robot system. All commands regarding the motion of the mobile robot and various sensors are given through the monitoring system which is designed to provide an integrated man-machine interface.

  • PDF

영구자석 바퀴를 이용한 이동 로봇의 조향 시스템 연구 (A Study On Steering System for Mobile Robot with Permanent Magnet Wheels)

  • 김진각;이화조;한승철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.311-312
    • /
    • 2006
  • In this paper, steering systems for mobile robot with permanent magnet wheels are discussed. The mobile robot with permanent magnet wheels can have three different types of steering and driving configurations; two-wheels, three-wheels, four-wheels. By a Two-WD(Wheel Driving) system, driving and steering characteristics are controlled by ratio of each wheel speeds. Three-WD system is steered by a front wheel and driven by rear wheels. Four-WD system has better stability than two wheel system. Usually the permanent magnet wheel has nearly none slip. Thus turning radius of the mobile robot with three-WD and four-WD System will be increased and the steering and driving system will be complicated. To solve this problem, two magnet wheels with two dummy wheels are used in this study. fuming radius of the developed mobile robot is small and the structure of the robot is simple. It is possible to move forward, backward, to turn left and right, and to rotate freely with two-WD. This study proved that two-WD system is very suitable fur the mobile robot with permanent magnet wheels.

  • PDF

미소운동 변환방법을 이용한 몇가지 이동로봇의 기구학 모델 (Kinematic Modeling for a Type of Mobile Robot using Differential Motion Transformation)

  • 박재한;김순철;이수영
    • 제어로봇시스템학회논문지
    • /
    • 제19권12호
    • /
    • pp.1145-1151
    • /
    • 2013
  • Kinematic modeling is a prerequisite for motion planning and the control of mobile robots. In this paper, we proposed a new method of kinematic modeling for a type of mobile robot based on differential motion transformation. The differential motion implies a small translation and rotation in three-dimensional space in a small time interval. Thus, transformation of the differential motion gives the velocity relationship, i.e., Jacobian between two coordinate frames. Since the theory of the differential motion transformation is well-developed, it is useful for the systematic velocity kinematic modeling of mobile robots. In order to show the validity for application of the differential motion transformation, we obtained velocity kinematic models for a type of exemplar mobile robot including spherical ballbots.

험한 지형 주행 운반 로봇 플랫폼의 개념 설계 및 분석 (Conceptual Design and Analysis of the Rough Terrain Mobile Robot)

  • 최동규;정승민;김종원
    • 한국정밀공학회지
    • /
    • 제30권1호
    • /
    • pp.24-31
    • /
    • 2013
  • This paper presents conceptual design and analysis of the rough terrain mobile robot. The requirement list of the robot is derived to make it possible to deliver small robots and communication equipment to certain place. In addition, detailed analysis of the existing mobile mechanisms is performed. Based on the requirement list and analysis, the proposed rough terrain mobile robot is systematically designed and through extensive simulations, its capability of moving on various rough terrains is successfully verified.

이동로봇의 퍼지 데드존 보상 (FL Deadzone Compensation of a Mobile robot)

  • 장준오
    • 전자공학회논문지
    • /
    • 제50권4호
    • /
    • pp.191-202
    • /
    • 2013
  • 이동로봇의 역학 제어기와 퍼지 데드존 보상기가 결합된 제어구조를 제안한다. 데드존 보상이 적응적이고 추적오차와 파라미터 추정치가 유계가 되는 퍼지논리 파라미터 동조알고리듬과 안정도 증명을 제시한다. 퍼지논리 데드존 보상기를 이동로봇에 시뮬레이션 및 실험함으로써 데드존의 해로운 영향을 줄이는 효과를 보여준다.

이동형 실내 공기질 측정 로봇 (Mobile Robot for Indoor Air Quality Monitoring)

  • 이소화;고동진;김나빈;박은서;전동렬;봉재환
    • 한국전자통신학회논문지
    • /
    • 제17권3호
    • /
    • pp.537-542
    • /
    • 2022
  • 실내 공기질에 관한 관심과 중요성이 커지고 있으나 현재의 고정된 장비를 이용한 실내 공기질 측정 방법에는 한계가 있다. 본 논문에서는 이동 중 요철에 의한 진동을 최소화하여 탑재된 센서를 보호하기 위해 소형 다족형 로봇에 공기질 측정 장비를 탑재하여 이동형 공기질 측정 로봇을 개발하였다. 개발한 이동형 공기질 측정 로봇은 간단한 보행 메커니즘을 활용하여 DC 모터 두 개의 정회전과 역회전 조합만으로 로봇의 전진, 후진, 좌우 선회가 가능하다. 로봇의 보행이나 보행 궤적을 제어하기 위해 복잡한 연산이 필요치 않고 하나의 아두이노를 사용해 로봇의 보행 제어 및 다양한 공기질 측정 장비의 데이터 획득과 전송을 할 수 있었다. 로봇 전장부의 소모 전력이 낮아 비교적 저용량의 배터리를 탑재하여 배터리로 인한 무게를 줄일 수 있었다. 개발한 로봇은 몸통에 배터리와 모터를 포함하여 다양한 공기질 측정 장비를 탑재하고 1.4kg의 무게를 가지며, 보행 및 선회 속도는 3.75cm/sec와 14.13rad/sec로 측정되었다. 다리의 최대 수직 도달 높이는 33mm였으나, 요철은 최대 24mm 높이까지 극복할 수 있었다.