• 제목/요약/키워드: Small hydraulic turbine generator

검색결과 5건 처리시간 0.018초

Internal Flow Analysis of a Tubular-type Small Hydroturbine by Runner Vane Angle

  • Nam, Sang-Hyun;Kim, You-Taek;Choi, Young-Do;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권7호
    • /
    • pp.1044-1050
    • /
    • 2008
  • Most of developed countries, the consumption of fossil fuels has been serious problems that cause serious environment pollution like acid rain, global warming. Also, we have faced that limitation fossil fuels will be exhausted. Currently, small hydropower attracts attention because of its small, clean, renewable, and abundant energy resources to develop. By using a small hydropower generator of which main concept is based on using the different water pressure levels in pipe lines, energy which was initially wasted by use of a reducing valve at the end of the pipeline, is collected by turbine in the hydropower generator. A propeller shaped hydroturbine has been used in order to use this renewable pressure energy. In this study, in order to acquire basic design data of tubular type hydraulic turbine, output power, head, efficiency characteristics due to the flow coefficient are examined in detail. Tubular-turbine among small hydraulic power generation can be used at low-head. The purpose of this study is to research turbine's efficiency due to runner vane angle using CFD analysis.

종축소수력발전소의 인입수량과 드럼수위와의 관계에 관한 연구 (A Study on the Drum Water Level Versus Incoming Water Quantities for Small Vertical Hydraulic Water Turbine Plant)

  • 최규식;정주원
    • 한국항행학회논문지
    • /
    • 제18권3호
    • /
    • pp.254-260
    • /
    • 2014
  • 소수력발전방식 중에서 종축 소수력 발전기를 채용한 시스템에 대해서 드럼의 수위상승에 대한 연구를 수행하였다. 드럼통에 용수를 일정하게 공급할 경우, 시간의 경과에 따라 드럼통의 수위가 상승하기는 하지만 반면, 그 상승효과 때문에 증가되는 위치에너지에 의한 러너 측 유출속도와 유출량이 증가하여 수위상승을 억제하고 그 결과 수위상승이 어느 위치에 멈추게 되어 평형상태를 이루게 된다. 이 시스템의 개발 및 분석에 의하면 드럼통의 수위는 드럼통의 크기나 높이, 폭, 형, 러너의 형상 등과는 관계 없이 결정된다. 수위는 오직 인입수량과 유출수량에 의하여만 결정되고 이에 따라 출력전력도 유사한 거동을 보인다는 것이 밝혀졌다. 그러므로 인입수량이 많지 않으면 원하는 수준의 드럼수위를 유지할 수 없을 뿐만 아니라, 원하는 출력전력도 얻을 수 없다. 아울러 현재 국내 산업시설에 설치되어 시험 운전 중에 있는 종축소수력발전시스템에 대해서 이 방법을 적용 및 수행하여 이 기법의 타당성을 입증하였다.

러너베인 각도에 따른 튜블러 수차의 속도 및 압력분포 (Velocity and Pressure Distributions of Tubular-type Hydroturbine for Variable Runner Vane Angle)

  • 남상현;김유택;최영도;남청도;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2839-2844
    • /
    • 2007
  • Micro hydraulic power generation of which the output is less or equal to a 100kW is attracting considerable attention. This is because of its small, simple, renewable, and abundant energy resources. By using a small hydropower generator of which main concept is based on using the different water pressure levels in pipe lines, energy which was initially wasted by use of a reducing valve at the end of the pipeline, is collected by turbine in the hydropower generator. A propeller shaped hydroturbine has been used in order to use this renewable pressure energy. In this study, in order to acquire basic design data of tubular type hydraulic turbine, output power, head, efficiency characteristics due to the flow coefficient are examined in detail. Moreover influences of pressure and velocity distributions with the variations of runner vane angle on turbine performance are investigated by using a commercial CFD code.

  • PDF

실험 및 CFD에 의한 가이드베인 개도에 따른 소형 튜블러 수차의 성능특성 (Performance Characteristics of Small Tubular-type Hydroturbine according to the Guide Vane Opening Angle by Experiment and CFD)

  • 남상현;김유택;최영도;이영호
    • 한국유체기계학회 논문집
    • /
    • 제11권5호
    • /
    • pp.44-49
    • /
    • 2008
  • As the alternative energy, renewable energy should have been developing by many techniques, in order to substitute the fossil fuel which will be disappeared in the near future. One of the small hydropower generator, main concept of tubular turbine is based on using the different water pressure levels in pipe lines, energy which was initially wasted by using a reducing valve at the end of the pipeline, is collected by turbine in the hydro power generator. A propeller shaped hydro turbine has been used in order to use this renewable pressure energy in order to acquire basic design data of tubular type hydraulic turbine, output power, head, efficiency characteristics due to the guide vane opening angle are examined in detail. First, it ensures the reliance of CFD by that of compared with experiment data. After all, the results of performance characteristics of the CFD and experiment show to confirm the data that power, head and efficiency of less than 4%, 2% and 5% respectively. Moreover influences of pressure, tangential and axial velocity distributions on turbine performance are investigated.

500kW 조류력 발전장치 개발 및 울돌목 실증시험 (Development of 500kW Tidal Current Energy Converter and Uldolmok Field Test)

  • 심우승;최익흥;이규찬;김해욱;배종국;민계식
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.159.2-159.2
    • /
    • 2011
  • Hyundai Heavy Industries has developed a tidal current energy converter utilizing the accumulated technology as the world largest constructor for ship and offshore structures. The model has two sets of turbines in both ends in order to utilize the bi-directional current flows in flood and ebb tide. The torque produced by turbine in tidal current is directly delivered to generator along the horizontal axis, in which the turbine, gear, generator, gear and turbine are connected successively. The manufactured model for field test has the turbine diameter of 5 meters to produce the maximum power of 500kW at maximum current speed of 5m/s. The technical verification of tidal power converter was performed by means of small scale model test in towing tank as well as field test at the Strait of Uldolmok located in Jindo of Jeollanamdo province. Field test was performed by mounting the tidal current converter on the SEP(Self Elevating Platform) which could lower the 4 vertical legs on the seabed and could elevate platform over the water surface using the hydraulic power for itself. The field test performed for a month shows that power output is similar or larger compared with the expected one in design stage. This paper presents the development of tidal current energy converter and real sea field test by Hyundai Heavy Industries. This project has finished successfully and provided the technical advance toward commercial services for tidal current power generation in the south-west region in Korea.

  • PDF