• Title/Summary/Keyword: Small fuel cells

Search Result 117, Processing Time 0.024 seconds

Nanomaterials for Advanced Electrode of Low Temperature Solid Oxide Fuel Cells (SOFCs)

  • Ishihara, Tatsumi
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.469-477
    • /
    • 2016
  • The application of nanomaterials for electrodes of intermediate temperature solid oxide fuel cells (SOFC) is introduced. In conventional SOFCs, the operating temperature is higher than 1073 K, and so application of nanomaterials is not suitable because of the high degradation rate that results from sintering, aggregation, or reactions. However, by allowing a decrease of the operating temperature, nanomaterials are attracting much interest. In this review, nanocomposite films with columnar morphology, called double columnar or vertically aligned nanocomposites and prepared by pulsed laser ablation method, are introduced. For anodes, metal nano particles prepared by exsolution from perovskite lattice are also applied. By using dissolution and exsolution into and from the perovskite matrix, performed by changing $P_{O2}$ in the gas phase at each interval, recovery of the power density can be achieved by keeping the metal particle size small. Therefore, it is expected that the application of nanomaterials will become more popular in future SOFC development.

Energy management strategies of a fuel cell/battery hybrid system using fuzzy logics (퍼지 논리를 이용한 연료전지/축전지 하이브리드 시스템의 운전제어)

  • Jeong, Kwi-Seong;Lee, Won-Yong;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • Hybrid power systems with fuel cells and batteries have the potential to improve the operation efficiency and dynamic response. A proper load management strategy is important to better system efficiency and endurance in hybrid systems. In this paper, a fuzzy logic algorithm has been used to determine the fuel cell output power depending on the external required power and the battery state of charge(SoC). If the required power of the hybrid system is small and the SoC is small, then the greater part of the fuel cell power is used to charge the battery pack. If the required power is relatively big and the SoC is big, then fuel cell and battery are concurrently used to supply the required power. These IF-THEN operation rules are implemented by fuzzy logic for the energy management system of hybrid system. The strategy is evaluated by simulation. The results show that fuzzy logic can be effectively used to optimize the operational efficiency of hybrid system and to maintain the battery SoC properly.

Optimization of the Performance of Microbial Fuel Cells Containing Alkalophilic Bacillus sp.

  • CHOI, YOUNGJIN;JOOYOUNG SONG;SEUNHO JUNG;SUNGHYUN KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.863-869
    • /
    • 2001
  • A systematic study of microbial fuel cells comprised of alkalophilic Bacillus sp. B-31 has been carried out under various operating conditions. A significant amount of electricity was generated when redox mediators were used. Among the phenothiazine-type redox dyes tested, azure A was found to be the most effective both in maintaining a high cell voltage and for the long-term operation. The maximum efficiency was and for the long-term operation. The maximum efficiency was obtained at ca. $50^{\circ}C$ giving an open circuit voltage of 0.7V. A small change in temperature did not significantly affect the cell performance, but a rapid decrease in performance was observed below $20^{\circ}C$ and above $70^{\circ}C$. It was noticeable that fuel cell efficiency and discharge pattern depended strongly on the carbon source used in the initial culture medium. Regardless of the initial carbon sources, only glucose and trehalose were utilized as substrates. Galactose, however, was not substantially utilized except when galactose was used in the initial medium. Glucose, in particular, showed $87\%$ coulombic efficiency, which was the highest value ever reported, when Bacillus sp. was cultured in a maltose-containing medium. This study demonstrates that highly efficient microbial fuel cells can be constructed with alkalophilic microorganisms by fine-tuning the operating conditions and by carefully selecting carbon sources in the initial culture medium.

  • PDF

Effects of Polyamidoamine Dendrimers on the Catalytic Layers of a Membrane Electrode Assembly in Fuel Cells

  • Lee Jin Hwa;Won Jongok;Oh In Hwan;Ha Heung Yong;Cho Eun Ae;Kang Yong Soo
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.101-106
    • /
    • 2006
  • The transport of reactant gas, electrons and protons at the three phase interfaces in the catalytic layers of membrane electrode assemblies (MEAs) in proton exchange, membrane fuel cells (PEMFCs) must be optimized to provide efficient transport to and from the electrochemical reactions in the solid polymer electrolyte. The aim of reducing proton transport loss in the catalytic layer by increasing the volume of the conducting medium can be achieved by filling the voids in the layer with small-sized electrolytes, such as dendrimers. Generation 1.5 and 3.5 polyamidoamine (PAMAM) dendrimer electrolytes are well-controlled, nanometer-sized materials with many peripheral ionic exchange, -COOH groups and were used for this purpose in this study. The electrochemically active surface area of the deposited catalyst material was also investigated using cyclic voltammetry, and by analyzing the Pt-H oxidation peak. The performances of the fuel cells with added PAMAM dendrimers were found to be comparable to that of a fuel cell using MEA, although the Pt utilization was reduced by the adsorption of the dendrimers to the catalytic layer.

Design and control of a DC-DC converter for electric vehicle applications (전기자동차 응용을 위한 DC-DC 컨버터의 설계 및 제어)

  • Kang Jeong-il;Roh Chung-Wook;Lee Sung-Sae;Moon Gun-Woo;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.754-758
    • /
    • 2002
  • In the fuel-cell electric vehicle system, the low-voltage output of unit fuel-cell demands a number of cells to be stacked In series to produce a DC link voltage which is high enough to drive the vehicle inverter system. However, this increases the complexity of the fuel-cell control system. This paper presents a design of high-efficiency boost converter employing the average current-mode control, which is able to convert a low voltage of a fuel-cell generator with a small number of unit cells to a stable and high DC link voltage for electric vehicle applications.

  • PDF

Hybrid System of Solar Cell and Fuel Cell (태양광발전과 연료전지의 하이브리드 시스템)

  • Hwang, Jun-Won;Choi, Young-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.568-573
    • /
    • 2009
  • Because of environmental crisis, researchers are seeking and developing a new, clean, safe and renewable energy. Solar cell energy and fuel cell energy have inestimable development potential. The paper introduces hybrid photovoltaic-fuel cell generation systems supplying a remote power load and hybrid system of solar cell and fuel cell considering the advantages of stable and sustainable energy from the economic point of view. Fuel cell power system has been proven a viable technology to back up severe PV power fluctuations under inclement weather conditions. Fuel cell power generation, containing small land us, is able to alleviate the heavy burden for large surface requirement of PV power plants. In addition, the PV-fuel cell hybrid power system shows a very little potential for lifetime $CO_2$ emissions. In this paper shows the I-V characteristics of the solar module which are dependent on the power of the halogen lamp and the I-V characteristics of fuel cells which are connected in parallel. Also, it shows efficiency of the hybrid system.

Legal Analysis and Directions for Implementing Hydrogen Bunkering in the Republic of Korea's Maritime Industry (대한민국 해양 산업에서 수소 벙커링 도입을 위한 법적 분석 및 실행 방안)

  • DONGHYUP YOUN;CHUNGHWAN PARK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.4
    • /
    • pp.401-409
    • /
    • 2024
  • The maritime industry, responsible for 80% of global freight transport, heavily pollutes the environment through traditional fossil fuels. The International Maritime Organization aims to reduce sulfur and greenhouse gas emissions, but faces technical and financial challenges. Hydrogen fuel cells present a promising alternative with high efficiency and low emissions. This study examines the legal and regulatory frameworks needed for hydrogen bunkering across land, port, and sea. Key legislation includes the High-pressure Gas Safety Control Act, Hydrogen Economy Promotion and Hydrogen Safety Management Act, Harbor Act, Harbor Authority Act, Marine Transportation Act, and Harbor Transport Business Act. The study identifies overlapping regulations and proposes integrated solutions. The findings underscore the necessity of strict safety standards and legislative amendments to recognize hydrogen as a ship fuel. Establishing a comprehensive legal framework is essential for safe and efficient hydrogen bunkering. Continuous updates through international cooperation and standardized regulations are crucial for adopting hydrogen fuel cells, ensuring a sustainable and environmentally friendly maritime industry.

Characterization of Passive Direct Methanol Fuel Cells (수동형 직접 메탄올 연료전지의 특성 연구)

  • Kho, B.K.;Kim, Y.J.;Oh, I.H.;Hong, S.A.;Ha, H.Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.23-27
    • /
    • 2003
  • In this study investigations have been carried out for the evaluation of small DMFCS under passive operation conditions for use in portable powers. Under passive conditions, a maximum performance was obtained at a methanol concentration of 4 M and at a catalyst loading of $8mg/cm^2$ on both electrodes. By optimizing various parameters, we could achieve the highest performance of $55mW/cm^2$ at 1 attn and at R.T.A monopolar stack consisting of 6 unit cells with active area of $4.5cm^2/cell$ was prepared and it showed a uniform voltage distribution all over the cells and it had a power output of 1 watt and a power density of $37mW/cm^2$ A monopolar stack which consisted of 16 cells and produced a 2.4W power was also fabricated and was tested for operation of a miniature car.

Construction of Microbial Fuel Cells Using Thermophilic Microorganisms, Bacillus licheniformis and Bacillus thermoglucosidasius

  • Choi, Young-Jin;Jung, Eun-Kyoung;Park, Hyun-Joo;Paik, Seung R.;Jung, Seun-Ho;Kim, Sung-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.813-818
    • /
    • 2004
  • A systematic study of microbial fuel cells comprised of thermophilic Bacillus licheniformis and Bacillus thermoglucosidasius has been carried out under various operating conditions. Substantial amount of electricity was generated when a redox mediator was used. Being affected by operation temperature, the maximum efficiency was obtained at 50$^{\circ}C$ with an open circuit voltage of ca. 0.7 V. While a small change around the optimum temperature did not make much effect on the cell performance, the rapid decrease in performance was observed above 70$^{\circ}C$. It was noticeable that fuel cell efficiency and discharge pattern strongly depended on the kind of carbon sources used in the initial culture medium. In the case of B. thermoglucosidasius, glucose alone was utilized constitutively as a substrate in the microbial fuel cell irrespective of used carbons sources. When B. licheniformis was cultivated with lactose as a carbon source, best charging characteristics were recorded. Trehalose, in particular, showed 41.2% coulombic efficiency when B. thermoglucosidasius was cultured in a starch-containing medium. Relatively good repetitive operation was possible with B. thermoglucosidasius cells up to 12 cycles using glucose as a carbon source, when they were cultured with lactose as an initial carbon source. This study demonstrates that highly efficient thermophilic microbial fuel cells can be constructed by a pertinent modulation of the operating conditions and by carefully selecting carbon sources used in the initial culture medium.

Optimization of Electro Polishing Processing Conditions for Deburring of Micro Fuel Cell bipolar plate (마이크로 연료 전지 분리판 디버링을 위한 Electro Polishing 가공 조건 최적화)

  • Chung, Jea-Hwa;Kim, Byung-Chan;Kim, Woon-Young;Cho, Myeong-Woo
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.51-55
    • /
    • 2017
  • Micro fuel cells have high reliability and long usage time. Among them, PEMFC (polymer Electrolyte Membrane Fuel Cell) is suitable as a portable power source because it is easy to fix electrolyte and simple structure. The bipolar plate, a key component of the fuel cell, is produced by cutting. In the case of micro fuel cell separator, burr is very small and the flow channel size in the separator is very small. Therefore, it is difficult to remove burrs in the usual way such as a brushing or ultra-sonic method. Therefore, this study proposed electrolytic polishing process and analyzed the characteristics of each condition by introducing the concept of roughness reduction rate. In addition, the ultrasonic process was added to analyze the effect of ultrasonic addition.