• Title/Summary/Keyword: Small diameter tube

Search Result 188, Processing Time 0.024 seconds

Flow Boiling Heat Transfer of R-410A in 0.5mm & 3.0mm Diameter Horizontal Tube (R-410A 비등열전달에 미치는 미세관경 0.5mm와 3.0mm의 영향)

  • Pamitran, A.S.;Choi, Kwang-Il;Oh, Jong-Taek;Hrnjak, Pega
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.154-159
    • /
    • 2008
  • Two-phase flow boiling heat transfer of R-410A in horizontal small tubes was reported in the present experimental study. The local heat transfer coefficients were obtained over a heat flux range of 5 to 40 kW/$m^2$, a mass flux range of 170 to 600 kg/$m^2s$, a saturation temperature range of 3 to $10^{\circ}C$, and quality up to 1.0. The test section was made of stainless steel tubes with inner diameters of 0.5 and 3.0 mm, and lengths of 330 and 3000 mm, respectively. The section was heated uniformly by applying a direct electric current to the tubes. The effects on heat transfer of mass flux, heat flux, inner tube diameter, and saturation temperature were presented. The experimental heat transfer coefficient is compared with six existing heat transfer coefficient correlations. A new boiling heat transfer coefficient correlation based on the superposition model for R-410A in small tubes was developed with mean deviation of 10.13%.

  • PDF

A Spring Back Calculation Model for the Sensitivity Analysis of Tube Design Parameters of Helical Steam Generator

  • Kim, Yong-Wan;Kim, Jong-In;Huh, Hyung;Park, Jin-Seok;Kim, Ji-Ho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1999.10a
    • /
    • pp.355.2-355
    • /
    • 1999
  • The spnng back phenomena occurring in the coiling process of a steam generator tube induces the dimensional inaccuracy and makes the coiling procedure difficult. In this research, an analytical model was developed to evaluate the amount of the spring back for SMART steam generator tubes. The model was developed on the basis of beam theory and elastic-perfectly plastic material property. This model was extended to consider the effect of plastic hardening and the effect of the tensile force on the spring back phenomena. Parametric studies were performed for various design variables of steam generator tubes in order to minimize the spring back in the design stage. A sensitivity analysis has shown that the low yield strength, the high elastic modulus, the small helix diameter, and the large tube diameter result in a small amount of the spring back. The amount of the spring back can be controlled by the selection of adequate design values in the basic design stage and reduced to an allowable limit by the application of the tensile force to the tube during the coiling process.rocess.

  • PDF

Experimental Study for the Speed-up of a Super-speed Train Model in the Partial Vacuum Tunnel (아진공 터널에서 초고속 열차의 속도향상에 관한 실험적 연구)

  • Kim, Dong-Hyeon;Kim, Jae-Heung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2064-2071
    • /
    • 2011
  • We are developing an innovative super-speed land transportation system running in a partial vacuum in tunnels with small inside diameter to reduce the aerodynamic drag forces. This paper presents the experimental results obtained on a small scale model when a super-speed train model passing through a tunnel with small inside diameter and a partial vacuum to reduce the aerodynamic drag forces. The experiments were performed on a 1/52-scale moving model rig in which a train model with a diameter of 58 mm and a length of 603 mm was accelerated in a launching tube with 12.27 m length by means of the compressed air launcher and then passed through a tunnel model with 17.149 m length. The partial vacuum was maintained in the tunnel in order to reduce the energy consumption of the propulsion system of the super-speed tube train at super-speed of 700 km/h. In this study, the blockage ratio of train to tunnel model is 0.336. Experimental results show the nonlinear effects of the vacuum on the speed-up of the train model in the tunnel model under the partial vacuum up to 0.21 atm and at the velocity up to 684 km/h. This paper is first study for experiments on the speed-up of a super-speed train model in the partial vacuum tunnels.

  • PDF

The design of heat exchanger of small size steam boiler using the concentric annuli tube with pin fin (동심원관-pin fin 열교환기를 이용한 소형 증기보일러 대류실 설계)

  • Kim, Sungil;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.115-118
    • /
    • 2012
  • The configurations of the heat exchanger of the boiler can be determined from the trade-off between the heat transfer area which is related to the capital cost and the pressure drop which is related to operating cost. In this study, 3.5 ton/hr small size marine boiler having concentric annuli tubes is the design boiler. To determine the optimizing point, according to diameter, number, length of tube, heat transfer, pressure drop, operating cost and capital cost have been calculated. Also, when the fin tube is replaced by the bare tube design parameters changed have been calculated.

  • PDF

Flow Condensation Heat Transfer Coefficients of R22, R410A and Propane in Aluminum Multi-Channel Tube (알루미늄 다채널 평판관내 R22, R410A, Propane의 흐름 응축 열전달 성능 비교)

  • Park Ki-Jung;Lee Ki-Young;Jung Dongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.7
    • /
    • pp.649-658
    • /
    • 2005
  • Flow condensation heat transfer coefficients (HTCs) of R22, R410, Propane (R290) were measured inside a horizontal 9 hole aluminum multi-channel flat tube. The main test section in the refrigerant loop was made of a 0.53m long multi-channel flat tube of hydraulic diameter of 1.4 mm. Refrigerant was cooled by passing cold water through an annulus surrounding the test section. Data were obtained in qualities of $0.1\~0.9$ at mass flux of $200\~400kg/m^2s$ and heat flux of $7.3\~7.7kW/m^2$ at the saturation temperature of $40^{\circ}C$. All popular heat transfer correlations in single-phase subcooled liquid flow and flow condensation originally developed for large single tubes predicted the present data of the multi channel flat tube within $25\%$ deviation when effective heat transfer area was used in determining experimental data. This suggests that there is little change in flow characteristics and patterns when the tube diameter is reduced down to 1.4 mm diameter range. Hence, a modified correlation based on the present data was proposed which could be applied to small diameter tubes with effective heat transfer area. The correlation showed a mean deviation of less than $20\%$ for all data.

Effect on Boiling Bleat Transfer of Horizontal Micro-channel Diameters for R-22 and R-407C (수평미세관의 직경이 R-22 및 R-407C 비등열전달에 미치는 영향)

  • Yoon, Kuk-Young;Choi, Kwang-Il;Oh, Jong-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.163-172
    • /
    • 2003
  • Boiling heat transfer coefficients and pressure drops for R-22 and R-407C were measured in horizontal micro-channels. The test section is stainless steel tube, inner tube diameters are 1.8mm and 2.8mm, and the respective lengths are 1500mm and 3000mm. The range of mass flux is 300-600kg/$m^2$s and heat flux is 5-15kW/$m^2$. In this results, pressure drop increased linearly for both R-22 and R-407C with increased mass flux, but the increase of heat flux did not affect the pressure. In addition, the pressure drop was fairly increased in the high quality region rather than low quality region. In the range of low quality, the mass flux had a small affect on the heat transfer coefficients, however, in high quality region, the heat transfer coefficients increased even more with increasing mass flux. Under the low quality region and low mass flux, the heat transfer coefficients increased with increasing heat flux densities. The effects of inner tube diameter were clearly observed. Namely, the measured pressure drop inside inner tube diameter 1.8 mm is higher than 2.8 mm with increasing the mass flux and heat flux. Also, the measured local heat transfer coefficient inside inner tube diameter 1.8 mm is higher than 2.8 mm in the range of high qualities. The experimental data for R-407C compared with proposed correlation using pure refrigerant. The experimental data for R-407C was more decreased than the proposed correlation for pure refrigerant up to 50% or more.

Nonlinear rheology of linear polymer melts: Modeling chain stretch by interchain tube pressure and Rouse time

  • Wagner, Manfred H.;Rolon-Garrido, Victor H.
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.203-211
    • /
    • 2009
  • In flows with deformation rates larger than the inverse Rouse time of the polymer chain, chains are stretched and their confining tubes become increasingly anisotropic. The pressures exerted by a polymer chain on the walls of an anisotropic confinement are anisotropic and limit chain stretch. In the Molecular Stress Function (MSF) model, chain stretch is balanced by an interchain pressure term, which is inverse proportional to the $3^{rd}$ power of the tube diameter and is characterized by a tube diameter relaxation time. We show that the tube diameter relaxation time is equal to 3 times the Rouse time in the limit of small chain stretch. At larger deformations, we argue that chain stretch is balanced by two restoring tensions with weights of 1/3 in the longitudinal direction of the tube (due to a linear spring force) and 2/3 in the lateral direction (due to the nonlinear interchain pressure), both of which are characterized by the Rouse time. This approach is shown to be in quantitative agreement with transient and steady-state elongational viscosity data of two monodisperse polystyrene melts without using any nonlinear parameter, i.e. solely based on the linear-viscoelastic characterization of the melts. The same approach is extended to model experimental data of four styrene-butadiene random copolymer melts in shear flow. Thus for monodisperse linear polymer melts, for the first time a constitutive equation is presented which allows quantitative modeling of nonlinear extension and shear rheology on the basis of linear-viscoelastic data alone.

Flow Condensation Heat Transfer Coefficients of R22 Alternative refrigerants in Aluminum Multi-Channel Tube (알루미늄 다채널 평판관내 R22 대체냉매의 흐름 응축 열전달 성능 비교)

  • Lee, Ki-Young;Lee, Min-Hang;Jung, Dong-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.249-255
    • /
    • 2005
  • Flow condensation heat transfer coefficients(HTCs) of R22, R4IO, Propane(R290) were measured inside a horizontal 9 hole aluminum multi-channel flat tube. The main test section in the refrigerant loop was made of a 0.53 m long multi-channel flat tube of hydraulic diameter of 1.4 mm. Refrigerant was cooled by passing cold water through an annulus surrounding the test section. Data were obtained in qualities of 0.1 ${\sim}$ 0.9 at mass flux of $200{\sim}400$ $kg/m^2s$ and heat flux of $7.3{\sim}7.7$ $kW/m^2$ at the saturation temperature of $4^{\circ}C$. All popular heat transfer correlations in single-phase subcooled liquid flow and flow condensation originally developed for large single tubes predicted the present data of the multi channel flat tube within 25% deviation when effective heat transfer area was used in determining experimental data. This suggests that there is little change in flow characteristics and patterns when the tube diameter is reduced down to 1.4 mm diameter range. Hence, a modified correlation based on the present data was proposed which could be applied to small diameter tubes with effective heat transfer area. The correlation showed a mean deviation of less than 20% for all data.

  • PDF

A Comparison of Flow Condensation HTCs of R22 Alternatives in the Multi-Channel Tube (알루미늄 다채널 평판관내 R22의 흐름응축 열전달 성능 비교)

  • Seo, Young-Ho;Lim, Dae-Taeg;Park, Ki-Jung;Jung, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1270-1275
    • /
    • 2004
  • Flow condensation heat transfer coefficients(HTCs) of R22 and R134a were measured on horizontal aluminum multi-channel tube. The experimental apparatus was composed of three main parts ; a refrigerant loop, a water loop and a water-ethylene glycol loop. The test section in the refrigerant loop was made of aluminum multi-channel tube of 1.4 mm hydraulic diameter and 0.53 m length. The refrigerant was cooled by passing cold water through an annulus surrounding the test section. The data scan vapor qualities $(0.1{\sim}0.9)$, mass flux ($200{\sim}400$ $kg/m^{2}s$) and heat flux ($7.3{\sim}7.7$ $kW/m^{2}$) at $40{\times}0.2^{\circ}C$ saturation temperature in small hydraulic diameter tube. It was found that some well-known previous correlations were not suitable for multichannel tube. So, It must develop new correlations for multi-channel tubes.

  • PDF

Experimental Study on the Characteristics of the Heat Transfer and the Pressure Drop inside the Small Diameter Tube with the Heat Transfer Enhancing Geometry (소구경 전열관 내의 열전달촉진 형상변화에 따른 열전달 및 압력강하 특성에 관한 실험적 연구)

  • Park Chan-Woo;Chin Sung-Min;Jurng Jong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.297-303
    • /
    • 2006
  • Friction and heat transfer coefficients were measured inside the corrugated tube using water as the working fluid. The test is performed for 16 tubes which outer diameter of tubes are 12.7 mm. These specifications are 4 indentation depths and 4 indentation pitches, respectively. The range of the water velocity inside the tube is from 0.5 to 3.0 m/s (8,500