• Title/Summary/Keyword: Small Surface Crack

Search Result 170, Processing Time 0.022 seconds

Non-destructive Analysis of Nano-sized Crack Morphology of Electro-deposit by Using Small Angle Neutron Scattering (소각중성자 산란법을 이용한 도금층의 극미세 균열 형상의 비파괴적 분석)

  • Choi, Yong;Shin, Eun Joo;Hahn, Young Soo;Seung, Baik Seok
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.2
    • /
    • pp.111-118
    • /
    • 2016
  • A method to quantitatively analyze the defects formed by the hydrogen evolution during electroplating was suggested based on the theoretical approach of the small angle neutron scattering technique. In case of trivalent chrome layers, an isolated defect size due to the hydrogen evolution was about 40 nm. Direct and pulse plating conditions gave the average defect size of about 4.9 and $4.5{\mu}m$ with rod or calabash shape, respectively. Current density change of the pulse plating from $1.5A/dm^2$ to $2.0A/dm^2$ enlarged the average defect size from 3.3 to $7.8{\mu}m$. The defect morphology like rod or calabash was originated by inter-connecting the isolated defects. Small angle neutron scattering was useful to quantitatively evaluate defect morphology of the deposit.

Improved ILDC Formulation for Very Thin Gap/Crack (아주 가는 균열의 산란 해석을 위한 향상된 ILDC 공식)

  • Lee, Hyunsoo;Koh, Il-Suek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.9
    • /
    • pp.938-943
    • /
    • 2014
  • The scattered field by a gap/crack on the PEC surface of a large object having low-observable RCS cannot be negligible, but may not be analyzed by the known high-frequency technique. If the electrical width of the crack is very small, the crack can be modeled by an impedance strip, whose scattering formulation can be analytically obtained based on a low-frequency approximation. The scattering solution is formulated for the 2D strip and TE(Transverse Electric) or TM(Transverse Magnetic) wave incidence, from which a 3D ILDC(Incremental Length Diffraction Coefficients) can be extracted. Using the ILDC formulation, the scattering by any arbitrary shaped crack can be estimated. In this paper, an improved ILDC equations are proposed, which combine the known TE and TM solutions. The improved accuracy of the proposed solution is numerically verified.

An Experimental Study on The Development of fly-ash Cement Mortal Permanent (플라이애쉬 시멘트 모르터를 사용한 비탈형 영구거푸집 개발에 관한 실험적연구)

  • 김형남;김우재;김성식;김영희;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.481-486
    • /
    • 1999
  • According to results of this research Fly-ash Cement permanent-form production was found to be possible by fly-ash mortal. The compress strength 350kg/$\textrm{cm}^2$, banding strength 120kg/$\textrm{cm}^2$ were possible material separting and bleeding by excessive W/C rate was decreased permanent-form made by polymer solved high price of polymer by fly-ash. Model material was made by result of first research. There were no minute-crack on beam form and out surface of form was very smooth, So filling degree seemed desirable length of form after steaming curing was maintained as expected. with these results production of form seemed possible. In the banding load test, fly-ash showed increase of maxim load 12% than RC. in the case of minute-crack, comparing with RC, fly-ash showed no crack at connect. at the first stage under continuing loading size of crack increased. These phenomena seemed to be based on contribution of stress of inner bars in permanent-form. in the test of defection, fly-ash shower about 10% beam load increase than RC. in the case of beam defection, RC showed sudden decrease of tolerance at maxim load and total breaking, but permanent-form showed breaking of bending maintaining defection with contribution of steel stress ($\Phi$6 wire-mash). There phenomenic seemed to be attributed to increase of surface and steel tolerance of form. According to construction explacemaion, it was guessed that each panel was constructed by conner-steels in form edge. so cohesiveness was small. on these bases. keeping width of horizontal band 30cm, form-panel of 20mm width was found to be of use. Permanent-form was found to be efficient in compressibleness, defection, safety and use of Fly-ash mortal.

  • PDF

Properties of Plaster Mold for Open Cell Aluminum Foam (발포금속 제조를 위한 석고주형의 특성)

  • Kim, Ki-Young;Paik, Nam-Ik
    • Journal of Korea Foundry Society
    • /
    • v.21 no.4
    • /
    • pp.253-259
    • /
    • 2001
  • There are many methods to produce metal foams, which can be classified into three groups according to the state of the starting metal i.e. liquid or powder or solid. Three types of defects such as cell closing, cell deformation or breakdown and cell misrun are thought to be occurred when we make the open cell aluminum foams by precision casting. Filling ability of the mold slurry between preform is related with cell closing, mold collapsibility is related with cell deformation or breakdown, mold temperature and pouring pressure are related with cell misrun. These factors can be evaluated by measuring slurry fluidity, burnout strength and permeability of the mold. Properties of the plaster mold were evaluated to find optimum mold conditions for high quality open cell aluminum foam in this study. Permeability was almost zero independent of burnout conditions, however, crack initiation was found on the surface of all specimens one or two minutes after taking out from the furnace. Crack has grown and disappeared with time. This crack may facilitate the mold filling when molten metal is poured, because of the improved mold permeability. It was considered that crack initiation and disappearance was closely related with temperature difference between the surface and inner part. Knocking-out the mold is a difficult problem due to the small cell size, because continuous mesh structure of the metal foam is not strong. It is not easy to remove molding material after pouring. We can expect that water quenching can facilitate the knocking-out the mold after solidification without damaging cell structures. Collapsed particles after water quenching became bigger with the increase in time.

  • PDF

Damage Tolerance in Hardly Coated Layer Structure with Modest Elastic Modulus Mismatch

  • Lee, Kee-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1638-1649
    • /
    • 2003
  • A study is made on the characterization of damage tolerance by spherical indentation in hardly coated layer structure with modest elastic modulus mismatch. A hard silicon nitride is prepared for the coating material and silicon nitride with 5wt% of boron nitride composites for underlayer. Hot pressing to eliminate the effect of interface delamination during the fracture makes strong interfacial bonding. The elastic modulus mismatch between the layers is not only large enough to suppress the surface crack initiation from the coating layer but sufficiently small to prevent the initiation of radial crack from the interface. The strength degradation of the layer structure after sphere contact indentation does not significantly occur, while the degradation of silicon nitride-boron nitride composite is critical at a high load and high number of contacts.

Viscoelastic Analysis for Behavior of Edge Cracks at the Bonding Interface of Semiconductor Chip (반도체 칩 접착 계면에 존재하는 모서리 균열 거동에 대한 점탄성 해석)

  • 이상순
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.309-315
    • /
    • 2001
  • The Stress intensity factors for edge cracks located at the bonding interface between the elastic semiconductor chip and the viscoelastic adhesive layer have been investigated. Such cracks might be generated due to stress singularity in the vicinity of the free surface. The domain boundary element method(BEM) has been employed to investigate the behavior of interface stresses. The overall stress intensity factor for the case of a small interfacial edge crack has been computed. The magnitude of stress intensity factors decrease with time due to viscoelastic relaxation.

  • PDF

A Study on Preventing Cracks at the Small Hole Exit in Ultrasonic Machining Using a Wax Coating (초음파 미세구멍 관통가공에서 왁스 코팅을 이용한 출구크랙 방지에 관한 연구)

  • Li, Hang;Ko, Tae Jo;Baek, Dae Kyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.105-111
    • /
    • 2015
  • Ultrasonic machining (USM) does not involve heating or any electrochemical effects, and subsequently causes low surface damage, has small residual stress, and does not rely on the conductivity of the workpiece. These characteristics are suitable for the machining of brittle materials, such as glass or ceramics. However, USM for brittle materials generates cracks on the workpiece while machining, especially at the hole exit with a small diameter. In this study, wax coating was used to deposit wax on the back side of the workpiece to decrease the occurrence of cracks at the exit holes in USM, and it was finally removed with a cleaning process. The experimental results show that this technique is beneficial for restricting the occurrence of cracks in glass or ceramics.

Ni Electroplating in the Emulsions of Supercritical $CO_2$ Formed by Ultrasonar (초음파를 이용한 초임계 이산화탄소 에멀젼내 Ni 전해도금)

  • Koh M. S.;Joo M. S.;Park K. H.;Kim H. D.;Kim H. W.;Han S. H.;Sato Nobuaki
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.6
    • /
    • pp.344-349
    • /
    • 2004
  • Emulsions were formed through putting small quantity of nickel electroplating solution into supercritical carbon dioxide, and then electroplating in the $sc-CO_2$ emulsions was conducted. It is an environmental-friendly technology that can solve the treatment of a large quantity of toxic plating wastewater, which is a big problem in the existing wet plating, and also can reduce secondary waste generation fundamentally. Supercritical carbon dioxide emulsions enhanced by ultrasonic horn were formed by non-ionic surfactant and nickel solution. Plating condition within emulsions was set up as 120bar and $55^{\circ}C$ through measurement of electrical conductivity following the pressure change. Experiments were conducted respectively against supercritical carbon dioxide emulsions electroplating and general chemical electroplating, and then their results were compared and analyzed. As the experiment result utilizing emulsions, plating surface was formed very evenly even with a small quantity of electroplating solution, and fine particles were plated compactly without any pinhole or crack due to hydrogenation, which occurs in general electroplating. Used electroplating solution can be reused through recovery process. Therefore, this technology will be able to be applied as new clean technology in electro-plating.

Elastic-plastic fracture of functionally graded circular shafts in torsion

  • Rizov, Victor I.
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.299-318
    • /
    • 2016
  • Analytical investigations were performed of a longitudinal crack representing a cylindrical surface in circular shafts loaded in torsion with taking into account the non-linear material behavior. Both functionally graded and multilayered shafts were analyzed. It was assumed that the material is functionally graded in radial direction. The mechanical behavior of shafts was modeled by using non-linear constitutive relations between the shear stresses and shear strains. The fracture was studied in terms of the strain energy release rate. Within the framework of small strain approach, the strain energy release rate was derived in a function of the torsion moments in the cross-sections ahead and behind the crack front. The analytical approach developed was applied to study the fracture in a clamped circular shaft. In order to verify the solution derived, the strain energy release rate was determined also by considering the shaft complimentary strain energy. The effects were evaluated of material properties, crack location and material non-linearity on the fracture behavior. The results obtained can be applied for optimization of the shafts structure with respect to the fracture performance. It was shown that the approach developed in the present paper is very useful for studying the longitudinal fracture in circular shafts in torsion with considering the material non-linearity.

A Study on the Measurement of the Internal Crack in Flange Welding Zone by Digital Shearography (전자전단 간섭법을 이용한 플랜지 용접부 내부 결함 측정에 관한 연구)

  • Kim, Jeong-Pil;Kang, Young-June;Park, Sang-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.97-104
    • /
    • 2009
  • There is a many kinds with nondestructive testing such as RT and UT representatively. Referred before two testing methods there is a limit which is spatial such as nuclear pipe, small vessel, sealing up vessel. So a new technique needs to overcome the limit which is spatial. shearography will be able to overcome the limit which is spatial. This paper introducing shearography which was known as non-contact full-field testing method and It is an interferometric technique for measurement of surface deformation such as displacement or displacement gradient. Also, a research about internal defect of the flange welding zone was accomplished. About variation with method pressurized with the Gaseous Nitrogen. Phase map where is various were measured according to changing a sheared direction, size of crack and loaded pressure. Consequently, crack quantitatively to be detected qualitatively was measured by using shearography.