• Title/Summary/Keyword: Small Reaction Volume

Search Result 88, Processing Time 0.027 seconds

Design and Development of SMH Actuator System (SMH 액추에이터 시스템 설계 및 개발)

  • Kwon T.K.;Choi. K.H.;Pang. D.Y.;Lee. S.C.;Kim N.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.551-555
    • /
    • 2005
  • This paper presents the temperature-pressure characteristics of SMH actuator using a peltier module. The simple SMH actuator, consisting of the plated hydrogen-absorbing alloy as a power source, Peltier elements as a heat source and a cylinder with metal bellows a functioning part has been developed. The SMH actuator is characterized by its small size, low weight, noiseless operation and a compliance similar to that of the human body. A new special metal hydride(SMH) actuator that uses the reversible reaction between the heat energy and mechanical energy of a hydrogen absorbing ally. It is well known that hydrogen-absorbing alloys can reversibly absorb and desorb a large amount of hydrogen, more than about 1000 times as their own volume. To improve the thermal conductivity of the hydrogen-absorbing alloy, an electro-less copper plating has been carried out. The effects of the electro-less copper plating and the dynamic characteristics of the SMH actuator have been studied. The hydrogen equilibrium pressure increases and hydrogen is desorbed by heating the hydrogen-absorbing alloys, whereas by cooling the alloys, the hydrogen equilibrium pressure decreases and hydrogen is absorbed. Therefor, the SMH actuator has the characteristic of being light and easy to use and so is suitable for use in medical and rehabilitation applications.

  • PDF

Effect of Operating Condition of Stripping Process on Ammonia Removal for Pre-treatment of Swine Wastewater (축산폐수 전처리를 위한 암모니아 탈기공정의 운전조건이 암모니아 제거에 미치는 영향)

  • Whang, Gye-Dae;Cho, Young-Moo
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.86-92
    • /
    • 2004
  • Lab-scale experiments have been carried out to investigate ammonia stripping with a modified spray tower for removing ammonia nitrogen from swine wastewater. The operating conditions such as initial pH, temperature, air flow, hole size of distributor determining the diameter of water drops, and influent solids concentration were closely examined focusing on removal efficiency of ammonia. As a result of the experiment, in order to achieve high rate of ammonia removal by the air stripping system, the air flow rate must be supplied at high rate with sufficiently high initial pH, temperature. The optimum operating condition to meet the residual ammonia concentration of 300 mg/L was the initial pH of 11.0 at $35^{\circ}C$ with the air flow rate of 20 L/min. It also showed that the smaller hole size is, the higher removal rate of ammonia is expected. However, when used a small sized distributor (2 mm), the flooding problem at the upper column occurred due to clogging of the hole. With regard to the influent solids concentration, it was showed that the lower concentration of solids, the higher removal rate of ammonia. The removal of particulate materials in influent led to improve the removal efficiency of ammonia, rather than to control the operating condition including initial pH, temperature, and air flow. The empirical correlation between KLa and operating parameters would be driven as, $K_{La}=(0.0003T-0.0047){\cdot}G^{0.3926}{\cdot}L^{-0.5169}{\cdot}C^{-0. 1849}$. The calculated $K_{La}$ from proposed formula can be used effectively to estimate the optimum reaction time and to calculate the volume of modified spray tower system.

Development of SMH Actuator System Using Hydrogen-Absorbing Alloy

  • Kwon, Tae-Kyu;Jeon, Won-Suk;Pang, Du-Yeol;Choi, Kwang-Hun;Kim, Nam-Gyun;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1328-1333
    • /
    • 2005
  • This paper presents the temperature-pressure characteristics of a new SMH actuator using a Peltier module. The SMH actuator is characterized by its small size, low weight, noiseless operation, and compliance similar to that of the human body. The simple SMH actuator, consisting of the plated hydrogen-absorbing alloys as a power source, Peltier elements as a heat source, and a cylinder with metal bellows as a functioning part has been developed. To improve the thermal conductivity of the hydrogen-absorbing alloy, an assembly of copper pipes has been used. It is well known that hydrogen-absorbing alloys can reversibly absorb and desorb a large amount of hydrogen, more than about 1000 times of their own volume. The hydrogen equilibrium pressure increases when hydrogen is desorbed by heating of the hydrogen-absorbing alloys, whereas by cooling the alloys, the hydrogen equilibrium pressure decreases and hydrogen is absorbed. The new special metal hydride (SMH) actuator uses the reversible reaction between the heat energy and mechanical energy of a hydrogen absorbing alloys. The desirable characteristics of SMH actuator, which makes it suitable for the uses in medical and rehabilitation applications, have been also studied. For this purpose, the characteristics of the new SMH actuator for different temperature, pressure, and external load were explored.

  • PDF

Hierarchically porous carbon aerogels with high specific surface area prepared from ionic liquids via salt templating method

  • Zhang, Zhen;Feng, Junzong;Jiang, Yonggang;Feng, Jian
    • Carbon letters
    • /
    • v.28
    • /
    • pp.47-54
    • /
    • 2018
  • High surface carbon aerogels with hierarchical and tunable pore structure were prepared using ionic liquid as carbon precursor via a simple salt templating method. The as-prepared carbon aerogels were characterized by nitrogen sorption measurement and scanning electron microscopy. Through instant visual observation experiments, it was found that salt eutectics not only serve as solvents, porogens, and templates, but also play an important role of foaming agents in the preparation of carbon aerogels. When the pyrolyzing temperature rises from 800 to $1000^{\circ}C$, the higher temperature deepens the carbonization reaction further to form a nanoporous interconnected fractal structure and increase the contribution of super-micropores and small mesopores and improve the specific surface area and pore volume, while having few effects on the macropores. As the mass ratio of ionic liquid to salt eutectics drops from 55% to 15%, that is, the content of salt eutectics increases, the salt eutectics gradually aggregate from ion pairs, to clusters with minimal free energy, and finally to a continuous salt phase, leading to the formation of micropores, uniform mesopores, and macropores, respectively; these processes cause BET specific surface area initially to increase but subsequently to decrease. With the mass ratio of ionic liquids to salts at 35% and carbonization temperature at $900^{\circ}C$, the specific surface area of the resultant carbon aerogels reached $2309m^2g^{-1}$. By controlling the carbonization temperature and mass ratio of the raw materials, the hierarchically porous architecture of carbon aerogels can be tuned; this advantage will promote their use in the fields of electrodes and adsorption.

Inhibitory Effect of Artemisiae Capillaris Herba on Fibrogenesis in Rat Hepatic Stellate Cells (인진(茵蔯)이 간성상세포의 섬유화 억제에 미치는 영향)

  • Kim, Seong-A;Woo, Hong-Jung;Kim, Young-Chul;Lee, Jang-Hoon
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.177-188
    • /
    • 2008
  • Objectives : This study was performed to investigate the anti-fibrogenic effect of Artemisiae Capillaris Herba on cultured rat hepatic stellate cells. Materials and Methods : Hepatic stellate cells(HSC-T6) were treated with various concentrations of Artemisiae Capillaris Herba extract for 24 hours. The extraction was done either with distilled water or 50% EtOH. After the treatment, cell viability, proliferation, procollagen levels and the mRNA of the collagen type 1a2 and ASMA were measured by using MTT assay, BrdU assay, RT-PCR, and Procollagen Type I C-peptide EIA Kit. Results : The viability and proliferation of the hepatic stellate cells were decreased as the concentration increased. The mRNA expression decreased consistently with the volume of the secreted procollagen with the extraction made with distilled water, which indicates the herb has inhibitory effect on fibrogenesis of the liver by regulating one of the fibrosis associated genes in transcription. However, it increased in 50% EtOH extraction, which shows that a more stable reaction is expected of the extraction made with distilled water than the extraction made with 50% EtOH. The production of procollagen was decreased by a low-concentration treatment with Artemisiae Capillaris Herba, but increased by a high concentration. It seemed that the cells were responding to Artemisiae Capillaris Herba in low- concentrations, thus producing small amounts of collagen. When the drug was administered at high enough concentration to give direct toxicity to cells, the ability of cells to produce collagen was activated, and the overproduction of collagen was observed as an undesirable results. Conclusion : These results suggest that Artemisiae Capillaris Herba is beneficial in the treatment of cirrhotic patients as well as for the patients with chronic hepatitis when extracted with water in the proper concentrations.

  • PDF

Microstructure and Tensile Strength Property of Arc Brazed DP steel using Cu-Sn Insert Metal (Cu-Sn 삽입금속을 이용한 DP강의 아크 브레이징 접합부의 미세조직과 인장특성)

  • Cho, Wook-Je;Cho, Young-Ho;Yun, Jung-Gil;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.31 no.1
    • /
    • pp.58-64
    • /
    • 2013
  • The following results were obtained, microstructures and tensile properties in arc brazed joints of DP(dual phase) steel using Cu-5.3wt%Sn insert metal was investigated as function of brazing current. 1) The Fusion Zone was composed of ${\alpha}Fe+{\gamma}Cu$ and Cu23Sn2. The reason for the formation of these solid solutions. Despite, Fe & Cu were impossible to solid solution at room temperature. It's melting & reaction to something of insert metal & Base Metal (DP Steel) by Arc. Brazing Process has faster cooling rate then Cast Process, Supersaturated solid solution at room temperature. 2) The increase Hardness of Fusion Zone was directly proportional to the rise of welding current. Because, ${\alpha}Fe+{\gamma}Cu$ phase (higher hardness than the Cu23Sn2.(104.1Hv < 271.9Hv)) Volume fraction was Growth, due to increasing the amount of base metal melting by High current. 3) The results of tensile shear test by Brazing, All specimens happen to fracture in Fusion Zone. On the other hand, when Brazing Current increasing tend to rise tensile load. but it was very small, about 26-30% of the base metal. 4) The result of fracture analysis, The crack initiate at Triple Point for meet to Upper B.M/Under B.M/Fusion Zone. This Crack propagated to Fusion zone. So ruptured by tensile strength. The Reason to in the fusion zone fracture, Fusion zone by Brazing of hardness (strength) was very lower then the base metal (DP steel). In addition the Fusion Zone's thickness in triple point was thin than the base metal's thickness in triple point.

The removal characteristics of No, SOx for plasma reactor separated flue gas duct from discharge domain (연소가스관로와 방전영역 분리형 플라즈마 반응기에서 Nox, SOx 제거특성)

  • Park, J.Y.;Koh, Y.S.;Lee, J.D.;Song, W.S.;Park, S.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2007-2009
    • /
    • 1999
  • In this paper, discharge domain of wire-cylindrical plasma reactor was separated from a gas flow duct to avoid unstable discharge by aerosol particle deposited on discharge electrode and grounded electrode. The NOx, SOx removal was experimentally investigated by a reaction induced to ammonium nitrate, ammonium sulfate using a low price of aqueous NaOH solution and a small quantity of ammonia. Volume percentage of aqueous NaOH solution used was 20% and $N_2$ flow rate was 2.5[$\ell$/min] for bubbling aqueous NaOH solution. Ammonia gas(14.82%) balanced by argon was diluted by air and was introduced to a main simulated flue gas duct through $NH_3$ injection system which was in downstream of reactor. The $NH_3$ molecular ratio[MR] was determined based on $NH_3$ to [NO+$SO_2$]. MR is 1.5. The NOx removal rates increased in the order of DC, AC and pulse, but SOx removal rates was not significantly effected by source of electricity. The NOx removal rate slightly decreased with increasing initial concentration but SOx removal rate was not significantly effect by initial concentration, and NOx, SOx removal rates decreased with increasing gas flow rate.

  • PDF

A Study on Effect of n-heptane Mixing on PAH and Soot Formation in Counterflow Ethylene Diffusion Flames (대향류 에틸렌 확산화염내 PAH 및 매연의 생성에 미치는 n-헵탄 혼합의 영향에 관한 연구)

  • Choi, Jae-Hyuk;Han, Won-Hui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.1
    • /
    • pp.55-60
    • /
    • 2012
  • In order to investigate the effect of n-heptane mixing on PAH and soot formation, small amount of n-heptane has been mixed in counterflow ethylene diffusion flame. Laser-induced incandescene and laser-induced fluorescene techniques were employed to measure soot volume fraction and polycyclic aromatic hydrocarbon(PAH) concentration, respectively. Results showed that the mixing of n-heptane in ethylene diffusion flame produces more PAHs and soot than those of pure ethylene flame. However, signals of LIF for 20% n-heptane mixture flame were lower than that of pure ethylene flame. It can be considered that the enhancement of PAH and soot formation by the n-heptane mixing of ethylene can be explained by methyl($CH_3$) radical in the low temperature region. And it can be found that reaction rate of H radical for 10% n-heptane plays a crucial role for benzene formation.

Fabrication of Ultramicroelectrodes with Nanoporous Gold Structures by Potentiostatic Anodization (정전위 양극 산화에 의한 나노다공성 금 구조의 초미세 전극 제작)

  • Seoin, Shin;Siyeon, Lee;Jongwon, Kim
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.6
    • /
    • pp.436-441
    • /
    • 2022
  • Because the nanoporous electrodes has large electrochemical surface areas, extensive studies have been focused on their fabrication methods. In this paper, a method for introducing a nanoporous gold (NPG) structure on the surface of an ultramicroelectrode (UME) using potentiostatic anodization was investigated. A well-defined NPG structure was introduced on the surface of the UME when a potential of 1.3 V was applied in 0.1 M phosphate buffer solution (pH 8) containing 1 M KCl. The anodic oxidation efficiency was investigated by observing the effect of the applied potential, the reaction time, and the size of the electrode on the roughness factor (Rf) of the prepared NPG-UMEs. In a short time of about 10 minutes, NPG-UME with a large Rf value of about 2000 could be prepared, which could be effectively used for electrochemical glucose detection. The results shown in this work are expected to have great applicability when performing electrochemical analysis with a small sample volume.

Electrochemical Properties of Tin-Antimony Sulfide Nanocomposites Synthesized by Hydrothermal Method as Anode Materials for Sodium Ion Batteries (수열 합성법에 의해 제조된 주석-안티몬 황화물계 나노복합체 기반 나트륨이온전지용 음극의 전기화학적 특성)

  • So Hyeon Park;Su Hwan Jeong;Suyoon Eom;Sang Jun Lee;Joo-Hyung Kim
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.545-552
    • /
    • 2022
  • Tin-antimony sulfide nanocomposites were prepared via hydrothermal synthesis and a N2 reduction process for use as a negative electrode in a sodium ion battery. The electrochemical energy storage performance of the battery was analyzed according to the tin-antimony composition. The optimized sulfides exhibited superior charge/discharge capacity (770 mAh g-1 at a current density of 100 mA g-1) and stable lifespan characteristics (71.2 % after 200 cycles at a current density of 500 mA g-1). It exhibited a reversible characteristic, continuously participating in the charge-discharge process. The improved electrochemical energy storage performance and cycle stability was attributed to the small particle size, by controlling the composition of the tin-antimony sulfide. By optimizing the tin-antimony ratio during the synthesis process, it did not deviate from the solubility limit. Graphene oxide also acts to suppress volume expansion during reversible electrochemical reaction. Based on these results, tin-antimony sulfide is considered a promising anode material for a sodium ion battery used as a medium-to-large energy storage source.