• Title/Summary/Keyword: Small Punch Specimen

Search Result 51, Processing Time 0.021 seconds

A Study on Stress Analysis of Small Punch-Creep Test and Its Experimental Correlations with Uniaxial-Creep Test (소형펀치-크리프 시험에 대한 응력해석과 일축 크리프 시험과의 상관성에 관한 연구)

  • Lee, Song-In;Baek, Seoung-Se;Kwon, Il-Hyun;Yu, Hyo-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2565-2573
    • /
    • 2002
  • A basic research was performed to ensure the usefulness of Small Punch-creep(SP-creep) test for residual life evaluation of heat resistant components effectively. This paper presents analytical results of initial stress and strain distributions in SP specimen caused by constant loading for SP-creep test and its experimental correlations with uniaxial creep(Ten-creep) test on 9Cr1MoVNb steel. It was shown that the initial maximum equivalent stress, ${\sigma}_{eq{\cdot}max}$ from FE analysis was correlated with steady-state equivalent creep strain rate, ${\epsilon}_{qf-ss'}$ rupture time, $t_r$, activation energy, Q and Larson-Miller Parameter, LMP during SP-creep deformation. The simple correlation laws, ${\sigma}_{sp}-{\sigma}_{TEN}$, $P_{sp}-{\sigma}_{TEN}\; and\; Q_{sp}-Q_{TEN}$ adopted to established a quantitative correlation between SP-creep and Ten-creep test data. Especially, the activation energy obtained from SP-creep test is linearly related to that from Ten-creep test at $650^{\circ}C$ as follows : $Q_{SP-P}\;{\risingdotseq}\;1.37 \;Q_{TEN},\; Q_{SP-{\sigma}}{\risingdotseq}1.53\; Q_{TEN}$.

The Effect of Hydrogen on the Variation of Properties at the Surface Layers of 590 MPa DP Steels Charged with Hydrogen (수소장입시킨 590 MPa DP강의 표면층 물성변화에 관한 수소의 영향)

  • Choi, Jong-Un;Park, Jae-Woo;Kang, Kae-Myung
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.3
    • /
    • pp.126-132
    • /
    • 2013
  • It was investigated that the effects of hydrogen charging on the properties of 590 MPa Dual Phase(DP) steels at the surface layers. The hydrogen-charging time was changed from 5 to 50 hours and current densities from 100, 150, and 200 $mA/cm^2$, respectively. It was found that the hydrogen content in the specimen was increased with as the charging time and the current density. The microvickers hardness of the subsurface zone was increased from 215.3 HV to 239.5 HV due to the increase in current density and charging time. The comparison of the absorbed energies tested by a small-punch (SP) test showed that the absorbed energy of the specimen was greatly reduced from 436 to 283 $kgf-mm^2$ because of hydrogen embrittlement. It was confirmed that bulb aspects of fracture surface became more brittle with increasing hydrogen content.

Small Punch Test for the Evaluation of Thermal Aging Embrittlement of CF8 Duplex Stainless Steel

  • Cheon, Jin-Sik;Kim, In-Sup;Jang, Jae-Gyoo;Kim, Joon-Gu
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.79-84
    • /
    • 1996
  • Small punch test was performed on CF8 duplex stainless steel aged at 370 and 400$^{\circ}C$ up to 5,000 h to evaluate the degree of the thermal aging embrittlement. At room temperature, the SP load-displacement curve was in a similar shape to those of ferritic steels and had a good reproducibility in spite of two-phase structure. The aging heat treatment resulted in a slight increase of the yield strength. As test temperature was lowered, the SP load showed a sudden drop followed by serrations before the SP specimen was fractured, resulting from the cracking of ferrite phase. The extent of thermal embrittlement was assessed in terms of the SP energy. Aging treatment at higher temperature led to a larger shift in the transition temperature and the corresponding change in the fracture mode. The main cause of the degradation was the embrittlement of ferrite phase. Additionally the phase boundary separation profoundly contributed to the degradation of the specimen aged at 400$^{\circ}C$.

  • PDF

Microstructures and Mechanical Behavior of 2024 Al Alloys Deformed by Equal Channel Angular Pressing (2024 Al 합금의 ECAP 공정에 따른 미세조직 변화와 강도특성)

  • Kim, Seon-Hwa;Choi, Yong-Lak
    • Korean Journal of Materials Research
    • /
    • v.16 no.1
    • /
    • pp.68-74
    • /
    • 2006
  • 2024 Al alloys were severely deformed by equal channel angular pressing(ECAP) to obtain an ultrafine grain structure. The more deformation amount increased, the more grain size decreased. Most of the grain structure were changed from elongated to equiaxed shape with increasing pass number. The morphology of S' phases was also changed from rod-type to spherical type. The grain size of 6 passed specimen was 100 to 200 nm, and the size of S' phases was about 10 nm in the microstructure. XRD measurements have revealed that the texture formed by plastic deformation disappeared in the 6 passed specimen. SP test results described that the start of crack propagation occurred at the transition zone between plastic bending and membrane stretching because of small elongation. The maximum strength of ECA pressed specimen increased 1.9 GPa to 2.9 GPa with increasing pass number.

Cryogenic Fracture Toughness Evaluation for Austenitic Stainless Steels by Means of Unloading Compliance Method

  • Yu, Hyo-Sun;Kwon, Il-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.26-34
    • /
    • 2001
  • Most research to date concerning the cryogenic toughness of austenitic stainless steels has concentrated on the base metal and weld metal in weldments. The most severe problem faced on the conventional austenitic stainless steel is the thermal aging degradation such as sensitization and carbide induced embrittlement. In this paper, we investigate the cryogenic toughness degradation which can be occurred for austenitic stainless in welding. The test materials are austenitic stainless JN1, JJ1 and JK2 steels, which are materials recently developed for use in nuclear fusion apparatus at cryogenic temperature. The small punch(SP) test was conducted to detect similar isothermally aging condition with material degradation occurred in service welding. The single-specimen unloading compliance method was used to determine toughness degradation caused by thermal aging for austenitic stainless steels. In addition, we have investigated size effect on fracture toughness by using 20% side-grooved 0.5TCT specimens.

  • PDF

Development of High Temperature Creep Properties Evaluation Method using Miniature Specimen (미소시험편을 이용한 고온 크리프 특성 평가법 개발)

  • Yu, Hyo-Sun;Baek, Seung-Se;Lee, Song-In;Ha, Jeong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.43-48
    • /
    • 2000
  • In this study, a small punch creep(SP-Creep) test using miniaturized specimen$(10{\times}10{\times}0.5mm)$ has been described for the development of the newly semi-destructive creep test method for high temperature structural components such as headers and tubes of boiler turbine casino and rotor and reactor vessel. The SP-Creep testing technique has been applied to 2.25Cr-1Mo(STBA24) steel used widely as boiler tube material and the creep test temperature are varied at $550^{\circ}C{\sim}600^{\circ}C$. The overall deformations of SP-Creep curves are definitely depended with applied load and creep test temperature and show the creep behaviors of three steps like conventional uniaxial creep curves. The steady state creep rate${\delta}_{ss}$ of SP-Creep curve for miniaturized specimen increases with increasing creep temperature, but the exponential value with creep loading is decreased. The activation energy$(Q_{spc})$ during SP-Creep deformation with various test temperatures shows 605.7kJ/mol that is g.eater than 467.4kJ/mol reported in uniaxial creep test. This may be caused by the difference of stress states during creep deformation In two creep test. But from the experimental results, e.g. SP-Creep curve behaviors, the steady state creep rate${\delta}_{ss}$ with creep temperature, and the exponential value(n) with creep loading, it can be summarized that the SP-Creep test may be a useful test method to evaluate the creep properties of the heat resisting material.

  • PDF

ESTIMATION OF DUCTILE FRACTURE BEHAVIOR INCORPORATING MATERIAL ANISOTROPY

  • Choi, Shin-Beom;Lee, Dock-Jin;Jeong, Jae-Uk;Chang, Yoon-Suk;Kim, Min-Chul;Lee, Bong-Sang
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.791-798
    • /
    • 2012
  • Since standardized fracture test specimens cannot be easily extracted from in-service components, several alternative fracture toughness test methods have been proposed to characterize the deformation and fracture resistance of materials. One of the more promising alternatives is the local approach employing the SP(Small Punch) testing technique. However, this process has several limitations such as a lack of anisotropic yield potential and tediousness in the damage parameter calibration process. The present paper investigates estimation of ductile fracture resistance(J-R) curve by FE(Finite Element) analyses using an anisotropic damage model and enhanced calibration procedure. In this context, specific tensile tests to quantify plastic strain ratios were carried out and SP test data were obtained from the previous research. Also, damage parameters constituting the Gurson-Tvergaard-Needleman model in conjunction with Hill's 48 yield criterion were calibrated for a typical nuclear reactor material through a genetic algorithm. Finally, the J-R curve of a standard compact tension specimen was predicted by further detailed FE analyses employing the calibrated damage parameters. It showed a lower fracture resistance of the specimen material than that based on the isotropic yield criterion. Therefore, a more realistic J-R curve of a reactor material can be obtained effectively from the proposed methodology by taking into account a reduced load-carrying capacity due to anisotropy.

Evaluation of Fracture Toughness and AE Characteristics in Functionally Gradient Material by means of MSP Test (MSP 시험법에 의한 경사기능재료의 파괴인성 및 AE 특성 평가)

  • 송준희;임재규;정세희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.631-638
    • /
    • 1995
  • In this study, mechanical characteristics test of Functionally Gradient Materia (FGM) was performed by means of Modified Small Punch (MSP) Test with FGM; NiCrAlY-8YSZ and PSZ-Ni. To determine fracture mechanic factor, it was carried out MSP test that has possibility with small specimen (10*10*0.5 mm$^{t}$ ) and AE test to analyze micro fracture mechanism. As a result, fracture behavior became varied from brittle fracture to ductile as the content of Ni(or NiCrAlY) composition was increased and fracture energy was increased too. AE characteristics demonstrated that AE technique can detect the onset of fracture processes and AE energy was suddenly increased in the vicinity of maximum load. Since Young's modulus, fracture stress and fracture toughness was determined by MSP test, it can be known that the composition of NiCrAly 75%/8YSZ25% has the best mechanical property and furthermore this result is supported with fracture surface observation.

Creep Damage Evaluation of High Temperature Material Using Small Punch Test Method (소형펀치실험법을 이용한 고온재료의 크리프 손상 평가)

  • Yu, Hyo-Sun;Lee, Song-In;Baek, Seung-Se;Na, Sung-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.265-268
    • /
    • 2000
  • In this study, a small punch creep (SP-Creep) test using miniaturized specimen has been described for the development of the new creep test method for high temperature structural components such as headers and tubes of boiler, turbine casing and rotor, and reactor vessel. The SP-Creep testing technique has been applied to 1Cr-0.5Mo steel used widely as boiler header material and the creep test temperature are varied at $550^{\circ}C{\sim}600^{\circ}C$. From the experimental results, e.g. SP-Creep curve behaviors, the creep rate in steady state and creep rupture life with test temperature and load, the load exponential value(n, m), the activation energy($Q_{spc}$), the Monkman-Grant relation and the creep life assessment equation etc., it can be summarized that the SP-Creep test may be a useful test method to evaluate the creep properties of the heat resisting material such as boiler header.

  • PDF

An Evaluation of Degraded Damage for Superaustenitic Stainless Steel by Electrochemical Polarization Technique (전기화학기법에 의한 슈퍼 오스테나이트 스테인리스강의 열화손상 평가)

  • Kwon, Il-Hyun;Lee, Song-In;Baek, Seung-Se;Lee, Jong-Gi;Iino, Y.;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.143-148
    • /
    • 2001
  • This research was undertaken to clarify effects of thermal aging on electrochemical and mechanical properties of superaustenitic stainless steel. The steel was artificially aged at $300{\sim}650^{\circ}C$ for $240{\sim}10,000hrs$. and investigated at $-196{\sim}650^{\circ}C$ using small punch(SP) test. Also, the change in electrochemical properties caused by effects of thermal aging was investigated using electrochemical anodic polarization test in a KOH electrolyte. Carbides and ${\eta}-phase(Fe_2Mo)$ precipitated in the grain bounderies seem to deteriorate the mechanical properties by decreasing cohesive strength in the grain bounderies and promote the current density observed in electrochemical polarization curves. The electrochemical and mechanical properties of superaustenitic stainless steel was drastically decreased in the specimen aged at $650^{\circ}C$.

  • PDF