• 제목/요약/키워드: Small Propeller

검색결과 107건 처리시간 0.023초

자동차용 알루미늄/복합재료 하이브리드 동력전달축의 압입접합부 설계에 관한 연구 (A study on the design of the press fit joint for automotive aluminum/composite hybrid propeller shaft)

  • 김학성;이대길
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.226-231
    • /
    • 2004
  • Press fitting method for joining of a hybrid tube and steel ring with small teeth for automotive aluminum/composite hybrid propeller shaft was devised to improve reliability and to reduce manufacturing cost, compared to other joining methods such as an adhesively bonded joint, bolted joint or welded joint. To obtain high strength of the press fit joint, an optimal design method for the teeth was devised with respect to number and shape of the steel teeth. Torsional static, fatigue tests and finite element analysis of the press fit joint were performed with respect to experimental variables. The developed optimal design method predicted well the static torque capability and failure mode of the press fit joint. Also, it provided design guide line of press fit joint for improving torsional static and fatigue characteristics.

  • PDF

일체형 입축 프로펠러수차 모형의 수력학적 성능특성 (Hydraulic Performance Characteristics of Vertical-Axis Propeller Turbine Model)

  • 박완순;이철형
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.379-382
    • /
    • 2008
  • The propeller type hydro turbine model with vertical axis has been tested and analized. The blade angle of runner of turbine model were designed to be varied according to the condition of head and flowrate. When the changes in head and output were comparatively large, the efficiency drop were small, so the efficiency characteristics and stability of the entire operating condition were maintained in good condition. These results showed that the developed model in this study will be suitable for small hydro power stations with large changes in head and load such as sewage treatment plants and agricultural reservoirs.

  • PDF

Performance of Contra-Rotating Propellers for Stratospheric Airships

  • Tang, Zhihao;Liu, Peiqing;Sun, Jingwei;Chen, Yaxi;Guo, Hao;Li, Guangchao
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권4호
    • /
    • pp.485-492
    • /
    • 2015
  • Small advance ratio and low Reynolds number of stratospheric propulsion system bring lots of challenges to the design of propellers. Contra-rotating propeller configuration is proposed to improve the propulsion efficiency. In this paper, the feasibility of contra-rotating propeller for stratospheric airship has been assessed and its performance has been investigated by wind tunnel tests. The experimental results indicate, at relatively low Reynolds number, although the advance ratio is fixed, the performance of propellers is different with variation of Reynolds number. Moreover, at the same Reynolds number, the efficiency of contra-rotating propeller achieved appears to be a few percent greater than that for a standard conventional propulsion system. It can be concluded that contra-rotating propellers would be an efficient means to improve the performance of stratospheric airship propulsion system.

Implementation of a distributed Control System for Autonomous Underwater Vehicle with VARIVEC Propeller

  • Nagashima, Yutaka;Ishimatsu, Takakazu;Mian, Jamal-Tariq
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.9-12
    • /
    • 1999
  • This paper presents the development of a control architecture for the autonomous underwater vehicle (AUV) with VARIVEC (variable vector) propeller. Moreover this paper also describes the new technique of controlling the servomotors using the Field Programmable Gate Array (FPGA). The AUVs are being currently used fur various work assignments. For the daily measuring task, conventional AUV are too large and too heavy. A small AUV will be necessary for efficient exploration and investigation of a wide range of a sea. AUVs are in the phase of research and development at present and there are still many problems to be solved such as power resources and underwater data transmission. Further, another important task is to make them smaller and lighter for excellent maneuverability and low power. Our goal is to develop a compact and light AUV having the intelligent capabilities. We employed the VARIVEC propeller system utilizing the radio control helicopter elements, which are swash plate and DC servomotors. The VARIVEC propeller can generate six components including thrust, lateral force and moment by changing periodically the blade angle of the propeller during one revolution. It is possible to reduce the number of propellers, mechanism and hence power sources. Our control tests were carried out in an anechoic tank which suppress the reflecting effects of the wall surface. We tested the developed AUV with required performance. Experimental results indicate the effectiveness of our approach. Control of VARIVEC propeller was realized without any difficulty.

  • PDF

소형선박용 프로펠러의 부식 녹 제거장치 개발 (Development of Corrosion Rust Removing Unit for Small Ship Propeller)

  • 김귀식;한세웅;현창해
    • 한국해양공학회지
    • /
    • 제19권6호통권67호
    • /
    • pp.72-77
    • /
    • 2005
  • The materials used in a ship screw propeller are commonly made with brass. The seawater corrosion and seawater cavitation of the screw propeller reduces the propulsive performance of the ship. In screw manufacturing, the corrosion rust of the screw propeller is removed through a hand grinding method. The grinding process produces dust of the heavy metals from the brass. The dust creates a poor working environment that is harmful to the health of the workers. An automatic corrosionrust removing apparatus, using a blasting method, was developed for the improvement of screw polishing conditions and its working environment. The performance of this apparatus was investigated by surface roughness, weight loss rate, hardness, electrochemical corrosion resistance, and cavitation erosion, after removing of the corrosion rust under various blasting conditions. Two medias of alumina and emery were used in this experiment. The surface roughness and hardness of the screw were improved by this apparatus. The electrochemical corrosion potential (Ecorr) and current density (Icorr) were measured by the dynamic polarization method, using a potentiostat,under the conditions of surface polishing with grinding, blasting, wire brushing, and fine sand papering. The test results prove that the new corrosion rust-removing apparatus improves the surface performance of a screw propeller.

소형선박용 프로펠러 및 샤프트 이물질 제거를 위한 수중절단기 기구 설계 및 제어기 개발 (Development of an Underwater Rope-cutter Device and Controller for Removal of Propeller and Shaft Foreign Material for Small Vessel)

  • 이헌석;오진석;최순홍
    • 해양환경안전학회지
    • /
    • 제25권7호
    • /
    • pp.927-935
    • /
    • 2019
  • 연안 해역에서 소형 선박의 프로펠러 고장으로 인한 사고가 지속적으로 발생하고 있다. 특히, 해상부유물(폐그물 및 로프 등)에 의하여 선박 프로펠러가 감기는 사고가 빈번히 일어나고 있다. 선박 프로펠러 감김 사고는 동력 상실로 인한 선박의 운항 지연 및 표류로 인한 1차 사고와 프로펠러에 감긴 로프을 제거하기 위한 잠수 작업등으로 인한 2차 사고의 우려가 있다. 이러한 빈번한 프로펠러 감김 사고에도 불구하고 문제를 해결할만한 적절한 도구가 없어 선박을 육상으로 인양하여 수리하거나, 잠수부가 직접 선박 아래로 잠수하여 문제를 해결하고 있는 실정이다. 이에 따라, 최근 선박 프로펠러 감김 사고를 예방하기 위해 프로펠러 샤프트에 로프절단장치를 일부 소형선박에 장착하고 있으나 비교적 높은 설치비용 및 시간이 으로 인하여 원활하게 적용되어지지 않는 것으로 판단된다. 본 연구에서는 이러한 문제점을 해결하기 위해 기계톱 원리를 이용한 간단한 구조를 가진 수중절단기 기구 설계 및 제어기 개발을 수행하였다. 수중절단기의 톱날은 직선왕복동작을 위해 유성기어와 크랭크핀을 사용함으로써 긴 행정을 가질 수 있도록 하였다. 또한 수중절단기는 소형 선박에 비치되어있는 배터리를 이용하여 작동시킬 수 있도록 하였다. 또한, 비전문가인 사용자가 보다 편리하고 안전하게 사용할 수 있도록 역전류 방지 및 속도제어회로를 적용하여 편리성 및 안정성을 확보하였다.

개방된 챔버 입구에서 작동하는 소형 프로펠러 팬 주위의 난류유동해석 (Numerical analysis of turbulent flow around a small propeller fan operating at the inlet of open chamber)

  • 오건제;강신형
    • 대한기계학회논문집B
    • /
    • 제21권12호
    • /
    • pp.1586-1594
    • /
    • 1997
  • Performance characteristics of a small propeller fan are numerically investigated solving the continuity and Reynolds-averaged Navier-Stokes equations. The Reynolds stresses for turbulent transport are modelled using a k-.epsilon. turbulence model. The present numerical procedure is constructed using the Finite Volume Method with the SIMPLE algorithms. The performance parameters obtained from the calculations are compared with the measured values for the various flow rates. A performance test of the fan shows different characteristics between a radial type at small flow rates and an axial type at large flow rates. Comparisons between the predictions and the measurements show that the predicted results are in good agreement with the measured values and reasonably reproduce the sharp variations of the power and head coefficient around a flow coefficient .PHI.=0.3. These comparisons indicate that the present numerical method is capable of resolving the performance characteristics with reasonable accuracy. At low flow rates, it is found that the flow enters the fan in an axial direction and is discharged radially outward at the tip which happens in the centrifugal fan. The centrifugal effect makes a significant difference in the characteristics of a fan at the low and high values of flow coefficient.

소형항공기용 왕복엔진의 정적 성능시험 연구 (A Study on the Static Performance Test of a Reciprocating Engine for Small Aircraft)

  • 김근배;안석민;김근택;최선우
    • 한국추진공학회지
    • /
    • 제7권3호
    • /
    • pp.53-60
    • /
    • 2003
  • 한국항공우주연구원에서 개발 중인 소형항공기와 관련하여 지상에서 왕복엔진의 정적 성능을 측정하기 위한 시험장치를 개발하였다. 시험장치는 Pusher형 추진시스템을 장착하고 구동하는 장치와 엔진의 기본적인 작동 감시 및 엔진 토크와 프로펠러 추력을 비롯한 여러 성능 변수들을 측정하고 처리하는 데이터 획득 장치로 구성되었다 먼저 기본 작동시험에서 도출된 성능데이터를 원래 엔진데이터와 비교 분석하여 시험장치의 기능을 검증하였다. 성능시험은 3단계에 걸쳐 다양한 시험조건에서 수행되었으며, 엔진의 흡기압력과 토크, 배압, 연료유량, 그리고 프로펠러의 정지추력을 측정하고 분석하였다.

소형항공기용 왕복엔진의 성능에 관한 흡/배기 영향 (Effects of Breath and Exhaust on the Performance of a Reciprocating Engine for Small Aircraft)

  • 김근배;김근택;최선우
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2002년도 제19회 학술발표대회 논문초록집
    • /
    • pp.37-40
    • /
    • 2002
  • The engine performance test was carried out to investigate the effects of breath and exhaust on the performance of a reciprocating engine for small aircraft. In this test, three valves to control flow areas of a inlet and two outlets were used, the engine manifold pressure and the static thrust of propeller were measured in nine breath/exhaust conditions. Generally, small variations on the performance were showed as the test conditions were changed. The manifold pressure was increased as flow area of the inlet or the outlet was decreased in normal condition, however it was decreased as both flow areas were decreased. The static thrust of propeller was showed similar as the manifold pressure.

  • PDF

"Inclined Keel" 을 이용한 컨테이너선의 추진효율 향상 (Efficient Propulsion of a Container Ship Using the Inclined Keel Concept)

  • 서광철;;김희정;전호환;강대수
    • 대한조선학회논문집
    • /
    • 제44권4호
    • /
    • pp.379-388
    • /
    • 2007
  • Ever increasing fuel prices and environmental concerns are forcing commercial vessel operators and designers to re-assess current vessel designs with an emphasis on their propulsion systems. The most important parameter determining propulsive efficiency is the diameter of propeller. Many investigations have been carried out to adapt a large and slow turning propeller known as one of the most robust and effective way of achieving high efficiency in ship propulsion system. However, for the same vessel a further increase of propeller diameter would require the modification of the aft end while still paying attention to the hull clearance to prevent excessive propeller excited vibrations. In order to take the advantage of this approach small workboats (e.g. tug boats, fishing vessels etc.) operate in service with a significant increase of aft draught and hence resulting "inclined keel" configuration can be observed. Although it is not unusual to see large vessels sometimes to operate with stern trim to improve their operational performance and fuel efficiency, it is rare to see a such vessel purposely built with an inclined keel feature to fit a large diameter propeller for power saving. This paper investigates the application of the inclined keel configuration to a 3600TEU container vessel with the aim of fitting an 11 % larger diameter propeller (and hence resulting 17.5 % lower rpm) to gain further power saving over the similar size basis container ship with conventional "level keel" configuration.