• 제목/요약/키워드: Small PWR

검색결과 63건 처리시간 0.033초

INSTRUMENTATION AND CONTROL STRATEGIES FOR AN INTEGRAL PRESSURIZED WATER REACTOR

  • UPADHYAYA, BELLE R.;LISH, MATTHEW R.;HINES, J. WESLEY;TARVER, RYAN A.
    • Nuclear Engineering and Technology
    • /
    • 제47권2호
    • /
    • pp.148-156
    • /
    • 2015
  • Several vendors have recently been actively pursuing the development of integral pressurized water reactors (iPWRs) that range in power levels from small to large reactors. Integral reactors have the features of minimum vessel penetrations, passive heat removal after reactor shutdown, and modular construction that allow fast plant integration and a secure fuel cycle. The features of an integral reactor limit the options for placing control and safety system instruments. The development of instrumentation and control (I&C) strategies for a large 1,000 MWe iPWR is described. Reactor system modeling-which includes reactor core dynamics, primary heat exchanger, and the steam flashing drum-is an important part of I&C development and validation, and thereby consolidates the overall implementation for a large iPWR. The results of simulation models, control development, and instrumentation features illustrate the systematic approach that is applicable to integral light water reactors.

ROSA/LSTF test and RELAP5 code analyses on PWR 1% vessel upper head small-break LOCA with accident management measure based on core exit temperature

  • Takeda, Takeshi
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1412-1420
    • /
    • 2018
  • An experiment was performed using the large-scale test facility (LSTF), which simulated a 1% vessel upper head small-break loss-of-coolant accident with an accident management (AM) measure under an assumption of total-failure of high-pressure injection (HPI) system in a pressurized water reactor (PWR). In the LSTF test, liquid level in the upper head affected break flow rate. Coolant was manually injected from the HPI system into cold legs as the AM measure when the maximum core exit temperature reached 623 K. The cladding surface temperature largely increased due to late and slow response of the core exit thermocouples. The AM measure was confirmed to be effective for the core cooling. The RELAP5/MOD3.3 code indicated insufficient prediction of primary coolant distribution. The author conducted uncertainty analysis for the LSTF test employing created phenomena identification and ranking table for each component. The author clarified that peak cladding temperature was largely dependent on the combination of multiple uncertain parameters within the defined uncertain ranges.

Technology Selection for Offshore Underwater Small Modular Reactors

  • Shirvan, Koroush;Ballinger, Ronald;Buongiorno, Jacopo;Forsberg, Charles;Kazimi, Mujid;Todreas, Neil
    • Nuclear Engineering and Technology
    • /
    • 제48권6호
    • /
    • pp.1303-1314
    • /
    • 2016
  • This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030-2040 timeframe. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR) designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1) a lead-bismuth fast reactor based on the Russian SVBR-100; (2) a novel organic cooled reactor; (3) an innovative superheated water reactor; (4) a boiling water reactor based on Toshiba's LSBWR; and (5) an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical $CO_2$ cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50-80%) with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options.

피동형 경수로 자동감압계통의 개선에 관한 연구 (Design Enhancements of Automatic Depressurization System in a Passive PWR)

  • Yu, Sung-Sik;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제25권4호
    • /
    • pp.515-528
    • /
    • 1993
  • 피동형 원자력 발전소의 설계 특성상 소형 냉각재상실사고시 노심손상이 발생되지 않기 위해서는 자동감압계통의 성공적인 작동이 필수적으로 요구된다. 그러나 기수행된 연구들에서 자동감압계통의 비신뢰도가 소형 냉각재상실사고로부터 기인되는 노심손상빈도에 상당 부분을 기여하고 있음을 알 수 있다. 본 연구에서는 자동감압계통의 불능도에 기여하는 계통의 취약점을 파악함과 함께 계통의 신뢰도를 증대시키기 위한 설계개선 방안들을 제시하고 각 방안에 대한 신뢰도 분석과 함께 열수력학적 타당성 여부를 보기 위한 소형 냉각재상실사고 모의가 RELAP5/MOD3 전산 코드를 사용하여 수행되었다. 신뢰도 분석은 고장수목 기법을 이용하여 수행되어졌다.

  • PDF

비등수형 원자로 발전소에의 레이저 피닝 적용기술 (Laser Peening Application for PWR Power Plants)

  • 김종도;유지 사노
    • Journal of Welding and Joining
    • /
    • 제34권5호
    • /
    • pp.13-18
    • /
    • 2016
  • Toshiba has developed a laser peening system for PWRs(pressurized water reactors) as well after the one for BWRs(boiling water reactors), and applied it for BMI(bottom-mounted instrumentation) nozzles, core deluge line nozzles and primary water inlet nozzles of Ikata Unit 1 and 2 of Shikoku Electric Power Company since 2004, which are Japanese operating PWR power plants. Laser pulses were delivered through twin optical fibers and irradiated on two portions in parallel to reduce operation time. For BMI nozzles, we developed a tiny irradiation head for small tubes and we peened the inner surface around J-groove welds after laser ultrasonic testing (LUT) as the remote inspection, and we peened the outer surface and the weld for Ikata Unit 2 supplementary. For core deluge line nozzles and primary water inlet nozzles, we peened the inner surface of the dissimilar metal welding, which is of nickel base alloy, joining a safe end and a low alloy metal nozzle. In this paper, the development and the actual application of the laser peening system for PWR power plants will be described.

Uncertainty analysis of ROSA/LSTF test by RELAP5 code and PKL counterpart test concerning PWR hot leg break LOCAs

  • Takeda, Takeshi;Ohtsu, Iwao
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.829-841
    • /
    • 2018
  • An experiment was conducted for the OECD/NEA ROSA-2 Project using the large-scale test facility (LSTF), which simulated a 17% hot leg intermediate-break loss-of-coolant accident in a pressurized water reactor (PWR). In the LSTF test, core uncovery started simultaneously with liquid level drop in crossover leg downflow-side before loop seal clearing, and water remaining occurred on the upper core plate in the upper plenum. Results of the uncertainty analysis with RELAP5/MOD3.3 code clarified the influences of the combination of multiple uncertain parameters on peak cladding temperature within the defined uncertain ranges. For studying the scaling problems to extrapolate thermal-hydraulic phenomena observed in scaled-down facilities, an experiment was performed for the OECD/NEA PKL-3 Project with the Primarkreislaufe Versuchsanlage (PKL), as a counterpart to a previous LSTF test. The LSTF test simulated a PWR 1% hot leg small-break loss-of-coolant accident with steam generator secondary-side depressurization as an accident management measure and nitrogen gas inflow. Some discrepancies appeared between the LSTF and PKL test results for the primary pressure, the core collapsed liquid level, and the cladding surface temperature probably due to effects of differences between the LSTF and the PKL in configuration, geometry, and volumetric size.

TAPINS: A THERMAL-HYDRAULIC SYSTEM CODE FOR TRANSIENT ANALYSIS OF A FULLY-PASSIVE INTEGRAL PWR

  • Lee, Yeon-Gun;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • 제45권4호
    • /
    • pp.439-458
    • /
    • 2013
  • REX-10 is a fully-passive small modular reactor in which the coolant flow is driven by natural circulation, the RCS is pressurized by a steam-gas pressurizer, and the decay heat is removed by the PRHRS. To confirm design decisions and analyze the transient responses of an integral PWR such as REX-10, a thermal-hydraulic system code named TAPINS (Thermal-hydraulic Analysis Program for INtegral reactor System) is developed in this study. Based on a one-dimensional four-equation drift-flux model, TAPINS incorporates mathematical models for the core, the helical-coil steam generator, and the steam-gas pressurizer. The system of difference equations derived from the semi-implicit finite-difference scheme is numerically solved by the Newton Block Gauss Seidel (NBGS) method. TAPINS is characterized by applicability to transients with non-equilibrium effects, better prediction of the transient behavior of a pressurizer containing non-condensable gas, and code assessment by using the experimental data from the autonomous integral effect tests in the RTF (REX-10 Test Facility). Details on the hydrodynamic models as well as a part of validation results that reveal the features of TAPINS are presented in this paper.

Thermodynamic and experimental analyses of the oxidation behavior of UO2 pellets in damaged fuel rods of pressurized water reactors

  • Jung, Tae-Sik;Na, Yeon-Soo;Joo, Min-Jae;Lim, Kwang-Young;Kim, Yoon-Ho;Lee, Seung-Jae
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2880-2886
    • /
    • 2020
  • A small leak occurring on the surface of a fuel rod due to damage exposes UO2 to a steam atmosphere. During this time, fission gas trapped inside the fuel rod leaks out, and the gas leakage can be increased due to UO2 oxidation. Numerous studies have focused on the steam oxidation and its thermodynamic calculation in UO2. However, the thermodynamic calculation of the UO2 oxidation in a pressurized water reactor (PWR) environment has not been studied extensively. Moreover, the kinetics of the oxidation of UO2 pellet also has not been investigated. Therefore, in this study, the thermodynamics of UO2 oxidation under steam injection due to a damaged fuel rod in a PWR environment is studied. In addition, the diminishing radius of the UO2 pellet with time in the PWR environment was calculated through an experiment simulating the initial time of steam injection at the puncture.

SBLOCA AND LOFW EXPERIMENTS IN A SCALED-DOWN IET FACILITY OF REX-10 REACTOR

  • Lee, Yeon-Gun;Park, Il-Woong;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • 제45권3호
    • /
    • pp.347-360
    • /
    • 2013
  • This paper presents an experimental investigation of the small-break loss-of-coolant accident (SBLOCA) and the loss-of-feedwater accident (LOFW) in a scaled integral test facility of REX-10. REX-10 is a small integral-type PWR in which the coolant flow is driven by natural circulation, and the RCS is pressurized by the steam-gas pressurizer. The postulated accidents of REX-10 include the system depressurization initiated by the break of a nitrogen injection line connected to the steam-gas pressurizer and the complete loss of normal feedwater flow by the malfunction of control systems. The integral effect tests on SBLOCA and LOFW are conducted at the REX-10 Test Facility (RTF), a full-height full-pressure facility with reduced power by 1/50. The SBLOCA experiment is initiated by opening a flow passage out of the pressurizer vessel, and the LOFW experiment begins with the termination of the feedwater supply into the helical-coil steam generator. The experimental results reveal that the RTF can assure sufficient cooldown capability with the simulated PRHRS flow during these DBAs. In particular, the RTF exhibits faster pressurization during the LOFW test when employing the steam-gas pressurizer than the steam pressurizer. This experimental study can provide unique data to validate the thermal-hydraulic analysis code for REX-10.