• Title/Summary/Keyword: Small Jet

Search Result 307, Processing Time 0.022 seconds

SEPARATION CONTROL MECHANISM USING SYNTHETIC JET ON AIRFOIL (익형에서의 synthetic jet을 이용한 박리제어 mechanism)

  • Kim, S.H.;Kim, W.;Hong, W.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.60-66
    • /
    • 2007
  • Separation control has been performed using synthetic jets on airfoil at high angle of attack. Computed results demonstrated that stall characteristics and control surface performance could be substantially improved by resizing separation vortices. It was observed that the actual flow control mechanism and flow structure is fundamentally different depending on the range of synthetic jet frequency. For low frequency range, small vortices due to synthetic jet penetrated to the large leading edge separation vortex, and as a result, the size of the leading edge vortex was remarkably reduced. For high frequency range, however, small vortex did not grow up enough to penetrate into the leading edge separation vortex. Instead, synthetic jet firmly attached the local flow and influenced the circulation of the virtual airfoil shape which is the combined shape of the main airfoil with the separation vortex. Theses results show the characteristic of unsteady flow of single synthetic jet. Beside, we researched on multi-array synthetic jet to obtain applicable synthetic jet velocity. Multi-location synthetic jet is proposed to eliminate small vortex on suction surface of airfoil. With the results, we concluded that the flow around airfoil is stable by high frequency synthetic jet with elimination of small vortex and confirmation of stable flow. Moreover, performance of multi-array/multi-location synthetic jet can be improved by changing phase angle of multi-location synthetic jet.

  • PDF

Factorization of the Jet Mass Distribution in the Small R Limit

  • Idilbi, Ahmad;Kim, Chul
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1230-1239
    • /
    • 2018
  • We derive a factorization theorem for the jet mass distribution with a given $p^J_T$ for the inclusive production, where $p^J_T$ is a large jet transverse momentum. Considering the small jet radius limit ($R{\ll}1$), we factorize the scattering cross section into a partonic cross section, the fragmentation function to a jet, and the jet mass distribution function. The decoupled jet mass distributions for quark and gluon jets are well-normalized and scale invariant, and they can be extracted from the ratio of two scattering cross sections such as $d{\sigma}/(dp^J_TdM^2_J)$ and $d{\sigma}/dp^J_T $. When $M_J{\sim}p^J_TR$, the perturbative series expansion for the jet mass distributions works well. As the jet mass becomes small, large logarithms of $M_J/(p^J_TR)$ appear, and they can be systematically resummed through a more refined factorization theorem for the jet mass distribution.

An Experimental Study on the Effects of Tabs and Small Proturbances Inside Nozzle on Supersonic Jet Flowfield (노즐 탭과 노즐 내부 낮은 돌출부가 초음속 제트유동장에 미치는 영향에 관한 연구)

  • Jin, Won-Jin;Cho, Chang-Kwon;Lee, Yeol;Yoon, Woong-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.24-31
    • /
    • 2002
  • The effects of vortex generators, in the form of small delta-shaped tabs or thin tapes at an axi-symmetric supersonic nozzle exit, on the characteristics of supersonic jet flowfields are investigated by Schlieren images and Pitot-tube measurements. Small tabs as small as 1 % of the nozzle exit area can introduce streamwise vortices and produce a significant effect on the jet flowfield downstream of the nozzle. The effect is stronger for the cases of under-expanded jet than over- and perfect-expanded cases, introducing a larger flow entrainment. The effects of the angle of tabs with respect to the flow direction are also investigated, and for over-expanded jet cases, it is found that the tabs bended toward upstream can weaken the interaction strength and remove the Mach disc in the jet flowfield. Introduction of small proturbances inside the nozzle surface by attachment of thin tapes is also found to change the pressure distribution in the circumferential direction of the flowfield. Its effect is also found to be dependent on the jet expansion ratio.

Separation control using multi-array/multi-location synthetic jet (Multi-array/multi-location synthetic jet을 이용한 박리 제어)

  • 김상훈;김종암
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.8-15
    • /
    • 2006
  • Separation control has been performed using the multi-array/multi-location synthetic jet on NACA23012 at high angle of attack. The flow control using single synthetic jet shows that stall characteristics can be substantially improved with delayed separation point. Theses results show the characteristic of unsteady flow of single synthetic jet. Beside, we researched on multi-array synthetic jet to obtain applicable synthetic jet velocity. Multi-location synthetic jet is proposed to eliminate small vortex on suction surface of airfoil. With the results, we concluded that the flow around airfoil is stable by high frequency synthetic jet with elimination of small vortex and confirmation of stable flow. Moreover, performance of multi-array/multi-location synthetic jet can be improved by changing phase angle of multi-location synthetic jet.

An Experimental Study on Heat Transfer and Flow Characteristics of a Circular Impinging Jet on a Flat Plate : Effects of Nozzle Wall Thickness and Nozzle Exit Pressure (원형 제트 충돌 열전달과 유동 특성에 관한 실험적 연구 : 노즐 벽 두께와 노즐 출구 압력의 영향)

  • Yoon, Sangheon;Yang, Geunyoung;Sohn, Dong Kee;Choi, Mansoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1285-1295
    • /
    • 1999
  • An experimental study on heat transfer and flow characteristics of a circular impinging jet on a flat plate has been carried out. Of particular interests are the effects of nozzle wall thickness and nozzle exit pressure. Experimental apparatus has been designed to view heating plate coated by TLC from the opposite side of the nozzle in order to measure heat transfer rates for cases of very small nozzle to plate spacings. A visualization study of jet flows has also been performed. As the nozzle wall thickness increases at small nozzle to plate spacings, the effect of mixing is inhibited due to the confinement caused by the finite nozzle wall, consequently, heat transfer rates have been decreased. At small nozzle to plate spacings, heat transfer rates and nozzle exit pressures are increased together, therefore, enhancement of heat transfer at small nozzle to plate spacings should be considered in conjunction with the need of more fan power to generate the same Reynolds numbers.

Flow and Temperature Characteristics in a Circular Impinging Jet (원형 충돌 제트에서의 유동 및 온도 특성)

  • Kim Jungwoo;Choi Haecheon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.237-240
    • /
    • 2002
  • In the present study, we perform LES of turbulent flow and temperature fields in a circular impinging jet at Re=5000 for two cases of H/D=2 and 6 (H denotes the distance between the jet exit and flat plate, and D does the diameter of the jet exit). In the case of H/D=2, the regular vortical structures observed in free jet do not exist because of the smaller distance than the potential core. The Nusselt number on the wall is largest at $r/D{\cong}10.67$ where vortex rings Impinge. At $r/D{\cong}1.5{\~}2.0$, the vortex rings induce the secondary vortices, resulting in a secondary peak in the Nusselt number there. In the case of H/D=6, the vortex rings change into three-dimensional vortical structures and the small-scale vortices impinge on the flat plate. The increase of turbulent intensity due to small-scale vortices results in the largest Nusselt number at the stagnation point.

  • PDF

A Study on the Revision of Domestic Pilot Jet Type Rating (국내 조종사 제트 형식한정 개정에 관한 연구)

  • Sung-yeob Kim;Jihun Choi;Myeong-sik, Lee;Hyeon-deok, Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.534-539
    • /
    • 2023
  • Currently, in Korea, to obtain a jet type rating, you must receive training on a small business jet model. The reason is because of the law in the Aviation Safety Act Enforcement Rules 『Appendix 4』 that states, "You must receive at least 2 hours of flight training." In the end, it is acquiring type rating as a small business jet aircraft with relatively low operating costs. The qualifications acquired in this way are different from those for aircraft operated by airlines. However, if you have an initial jet type rating, you can acquire an airline aircraft qualification just by training on a simulator, so airlines want you to have at least a small-jet type rating. However, in the United States and Australia, there is a system in place to acquire initial jet type rating through simulator training without actual flight training.

Comparison of Supersonic Jet Characteristics between Hydrogen and Helium injected by Small-cone-angle Pintle-type Hydrogen Injector (수소 및 헬륨을 이용한 작은 원추각 핀틀형 수소인젝터의 초음속 제트 특성 비교)

  • Gyuhan Bae;Juwan Lim;Jaehyun Lee;Seoksu Moon
    • Journal of ILASS-Korea
    • /
    • v.29 no.2
    • /
    • pp.83-90
    • /
    • 2024
  • Understanding the fundamental characteristics of supersonic hydrogen jets is important for the optimization of combustion in hydrogen engines. Previous studies have used helium as a surrogate gas to characterize the hydrogen jet characteristics due to potential explosion risks of hydrogen. It was based on the similarity of hydrogen and helium jet structures in supersonic conditions that has been confirmed using hole-type injectors and large-cone-angle pintle-type injectors. However, the validity of using helium as a surrogate gas has not been examined for recent small-cone-angle pintle-type injectors applied to direct-injection hydrogen engines, which form a supersonic hollow cone near the nozzle and experience the jet collapse downstream. Differences in the physical properties of hydrogen and helium could alter the jet development characteristics that need to be investigated and understood. This study compares supersonic jet structures of hydrogen and helium injected by a small-cone-angle (50°) pintle-type hydrogen injector and discusses their differences and related mechanisms. Jet penetration length and dispersion angle are measured using the Schlieren imaging method under engine-like injection conditions. As a result, the penetration length of hydrogen and helium jets showed a slight difference of less than 5%, and the dispersion angle showed a maximum of 10% difference according to the injection condition.

An Experimental Study for Combustion Characteristics of Hydrogen Jet Diffusion Flames (수소분류확산화염의 연소특성에 관한 실험적 연구)

  • Jung, Byong-Koog;Cho, Tae-Young;Song, Kyu-Keun;Jung, Jae-Youn;Kim, Hyung-Gon;Torii, Shuichi
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1310-1315
    • /
    • 2004
  • The present study deals with the unique characteristics of hydrogen jet diffusion flames, such as split flames and reignition phenomenon. The split flames are composed of a small flamelet on the nozzle rim and a lifted main flame at downstream. When mass flow rates of fuel reach a critical point, a small-sized flamelet is found to remain in the vicinity of the nozzle exit and the flame reignition subsequent to blowout of main flame occurs repeatedly. In this study, the non-luminous hydrogen jet diffusion flames are visualized by using schlieren technique in order to analyze the combustion characteristics of hydrogen jet diffusion flames with focus on the flame reignition phenomenon.

  • PDF

A Numerical Analysis on Flow Characteristic of 200HP Grade Water Jet for Small Ship (소형선박용 200마력급 Water Jet의 유동특성에 관한 수치해석)

  • Yi, Chung-Seob;Jeong, Jae-Hoon;Lee, Jong-Su;Yun, Ji-Hun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.150-155
    • /
    • 2012
  • Water jet propulsion system has low efficiency than screw propeller at low speed, but has been applied in high speed ship due to its better cavitation performance and high rotation capacity. In this study, a numerical analysis was conduct to understand the flow in the propulsion system of 200HP grade water jet for small ship. As the result, it could be confirmed that total pressure and force of the flow was increased through the impeller and the straight-ability of discharging flow to outlet was improved by guide vane. Also, the reliability of numerical analysis was secured by comparing peripheral velocity calculated by design values with that calculated by numerical analysis.