• 제목/요약/키워드: Small Face Detection

검색결과 55건 처리시간 0.021초

Multi-Face Detection on static image using Principle Component Analysis

  • Choi, Hyun-Chul;Oh, Se-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.185-189
    • /
    • 2004
  • For face recognition system, a face detector which can find exact face region from complex image is needed. Many face detection algorithms have been developed under the assumption that background of the source image is quite simple . this means that face region occupy more than a quarter of the area of the source image or the background is one-colored. Color-based face detection is fast but can't be applicable to the images of which the background color is similar to face color. And the algorithm using neural network needs so many non-face data for training and doesn't guarantee general performance. In this paper, A multi-scale, multi-face detection algorithm using PCA is suggested. This algorithm can find most multi-scaled faces contained in static images with small number of training data in reasonable time.

  • PDF

모바일 로봇을 위한 저해상도 영상에서의 원거리 얼굴 검출 (Detection of Faces Located at a Long Range with Low-resolution Input Images for Mobile Robots)

  • 김도형;윤우한;조영조;이재연
    • 로봇학회논문지
    • /
    • 제4권4호
    • /
    • pp.257-264
    • /
    • 2009
  • This paper proposes a novel face detection method that finds tiny faces located at a long range even with low-resolution input images captured by a mobile robot. The proposed approach can locate extremely small-sized face regions of $12{\times}12$ pixels. We solve a tiny face detection problem by organizing a system that consists of multiple detectors including a mean-shift color tracker, short- and long-rage face detectors, and an omega shape detector. The proposed method adopts the long-range face detector that is well trained enough to detect tiny faces at a long range, and limiting its operation to only within a search region that is automatically determined by the mean-shift color tracker and the omega shape detector. By focusing on limiting the face search region as much as possible, the proposed method can accurately detect tiny faces at a long distance even with a low-resolution image, and decrease false positives sharply. According to the experimental results on realistic databases, the performance of the proposed approach is at a sufficiently practical level for various robot applications such as face recognition of non-cooperative users, human-following, and gesture recognition for long-range interaction.

  • PDF

Multi-Task FaceBoxes: A Lightweight Face Detector Based on Channel Attention and Context Information

  • Qi, Shuaihui;Yang, Jungang;Song, Xiaofeng;Jiang, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권10호
    • /
    • pp.4080-4097
    • /
    • 2020
  • In recent years, convolutional neural network (CNN) has become the primary method for face detection. But its shortcomings are obvious, such as expensive calculation, heavy model, etc. This makes CNN difficult to use on the mobile devices which have limited computing and storage capabilities. Therefore, the design of lightweight CNN for face detection is becoming more and more important with the popularity of smartphones and mobile Internet. Based on the CPU real-time face detector FaceBoxes, we propose a multi-task lightweight face detector, which has low computing cost and higher detection precision. First, to improve the detection capability, the squeeze and excitation modules are used to extract attention between channels. Then, the textual and semantic information are extracted by shallow networks and deep networks respectively to get rich features. Finally, the landmark detection module is used to improve the detection performance for small faces and provide landmark data for face alignment. Experiments on AFW, FDDB, PASCAL, and WIDER FACE datasets show that our algorithm has achieved significant improvement in the mean average precision. Especially, on the WIDER FACE hard validation set, our algorithm outperforms the mean average precision of FaceBoxes by 7.2%. For VGA-resolution images, the running speed of our algorithm can reach 23FPS on a CPU device.

SVM을 이용한 얼굴 검출 성능 향상에 대한 연구 (A Study on the Performance Enhancement of Face Detection using SVM)

  • 이지근;정성태
    • 한국정보통신학회논문지
    • /
    • 제9권2호
    • /
    • pp.330-337
    • /
    • 2005
  • 본 논문에서는 SVM(Support Vector Machine)을 이용하여 얼굴 검출 성능을 향상시키는 방법을 제안한다. 본 논문에서는 먼저 영상내의 거대한 특징 집합으로부터 중요한 작은 특징 집합을 선택하는 AdaBoost 기반 객체 검출 방법을 사용하여 얼굴 후보 영역을 검출한다. 그 다음에는 특징 벡터에 대해 SVM 기반 이진분류를 수행하여 후보 영역의 영상이 얼굴인지 아닌지를 판별한다 실험 결과 본문에서 제안한 방법은 기존의 방법에 비하여 얼굴 검출의 정확도를 향상시켰다.

Block Based Face Detection Scheme Using Face Color and Motion Information

  • Kim, Soo-Hyun;Lim, Sung-Hyun;Cha, Hyung-Tai;Hahn, Hern-Soo
    • 한국지능시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.461-468
    • /
    • 2003
  • In a sequence of images obtained by surveillance cameras, facial regions appear very small and their colors change abruptly by lighting condition. This paper proposes a new face detection scheme, robust on complex background, small size, and lighting conditions. The proposed method is consisted of three processes. In the first step, the candidates for the face regions are selected using face color distribution and motion information. In the second stage, the non-face regions are removed using face color ratio, boundary ratio, and average of column-wise intensity variation in the candidates. The face regions containing eyes and mouth are segmented and classified, and then they are scored using their topological relations in the last step. To speed up and improve a performance the above process, a block based image segmentation technique is used. The experiments have shown that the proposed algorithm detects faced regions with more than 91% of accuracy and less than 4.3% of false alarm rate.

실시간 얼굴 검출 시스템 설계 및 구현 (Design and Implementation of a Real-Time Face Detection System)

  • 정성태;이호근
    • 한국멀티미디어학회논문지
    • /
    • 제8권8호
    • /
    • pp.1057-1068
    • /
    • 2005
  • 본 논문에서는 웹카메라 영상과 같은 저해상도의 동영상으로부터 실시간으로 다중 얼굴을 검출할 수 있는 시스템을 제안한다. 본 논문에서는 먼저 영상내의 거대한 특징 집합으로부터 중요한 작은 특징 집합을 선택하는 AdaBoost 기반 객체 검출 방법을 사용하여 얼굴 후보 영역을 검출한다. 검출된 얼굴 후보 영역에 대한 주성분 분석을 수행함으로써 데이터의 크기가 현저히 줄어든 특징 벡터를 구한다. 그 다음에는 특징 벡터에 대해 SVM 기반 이진분류를 수행하여 후보 영역의 영상이 얼굴인지 아닌지를 판별한다. 실험결과에 의하면, 본 논문에서 제안한 방법은 저해상도 동영상에서 실시간 처리가 가능한 다중 얼굴 검출 성능을 보였고, 주성분분석과 SVM을 이용한 얼굴 검증 과정을 통해 얼굴 검출의 정확도를 향상 시켰다.

  • PDF

A Fast and Accurate Face Tracking Scheme by using Depth Information in Addition to Texture Information

  • Kim, Dong-Wook;Kim, Woo-Youl;Yoo, Jisang;Seo, Young-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.707-720
    • /
    • 2014
  • This paper proposes a face tracking scheme that is a combination of a face detection algorithm and a face tracking algorithm. The proposed face detection algorithm basically uses the Adaboost algorithm, but the amount of search area is dramatically reduced, by using skin color and motion information in the depth map. Also, we propose a face tracking algorithm that uses a template matching method with depth information only. It also includes an early termination scheme, by a spiral search for template matching, which reduces the operation time with small loss in accuracy. It also incorporates an additional simple refinement process to make the loss in accuracy smaller. When the face tracking scheme fails to track the face, it automatically goes back to the face detection scheme, to find a new face to track. The two schemes are experimented with some home-made test sequences, and some in public. The experimental results are compared to show that they outperform the existing methods in accuracy and speed. Also we show some trade-offs between the tracking accuracy and the execution time for broader application.

시선 응시 점 기반의 관심영역 확장을 통한 원 거리 얼굴 검출 (Far Distance Face Detection from The Interest Areas Expansion based on User Eye-tracking Information)

  • 박희선;홍장표;김상열;장영민;김철수;이민호
    • 전자공학회논문지
    • /
    • 제49권9호
    • /
    • pp.113-127
    • /
    • 2012
  • 영상처리 기법을 이용한 얼굴검출에 관한 많은 다양한 방법들이 제시되어 왔다. 일반적으로 가장 많이 쓰이는 얼굴 검출 방식은 Viola와 Jones이 제안한 Adaboost 방식이다. 이 방식은 Haar-like feature을 이용하여 얼굴영상을 선행 학습하고, 검출 성능은 학습된 DB에 의존한다. 이는 일정 거리 범위 안의 학습된 얼굴 크기에서는 얼굴 검출을 잘 수행하지만, 카메라에서 객체(얼굴)의 거리가 멀어지면 얼굴 크기가 작아져 기존에 학습한 Haar-like feature로 얼굴 검출을 하지 못하는 경우가 발생한다. 이에 본 논문에서는 생물학 기반의 선택적 주의집중 기반의 Haar-like feature 정보를 이용한 Adaboost 모델과 사용자의 시선 응시 점 정보를 이용하여, 사용자의 관심영역 확장을 통한 원거리 얼굴 검출 모델을 제안한다. 생물학적 기반의 선택적 주의 집중 모델인 돌출맵(Saliency map) 정보를 이용하여 입력 영상에 대하여 얼굴 후보 영역을 검출하고, 검출된 얼굴 후보 영역 중에서 선행 학습된 Haar-like feature 정보로 Adaboost 알고리즘을 이용하여 최종 얼굴 영상을 검출한다. 그리고 사용자의 시선 응시 점 정보는 관심영역을 선택 하는데 이용된다. 피 실험자가, 카메라로부터 멀리 거리 떨어져 얼굴의 크기가 얼굴검출이 힘들더라도 사용자 시선 응시 점 영역을 선형 보간법으로 확대하여 입력영상으로 재사용함으로써 얼굴 검출 성능을 높일 수 있다. 제안된 방법이 기존의 Adaboost 방법보다 얼굴 검출 성능과 수행시간 면에서 우수함을 실험을 통해 확인하였다.

Tiny and Blurred Face Alignment for Long Distance Face Recognition

  • Ban, Kyu-Dae;Lee, Jae-Yeon;Kim, Do-Hyung;Kim, Jae-Hong;Chung, Yun-Koo
    • ETRI Journal
    • /
    • 제33권2호
    • /
    • pp.251-258
    • /
    • 2011
  • Applying face alignment after face detection exerts a heavy influence on face recognition. Many researchers have recently investigated face alignment using databases collected from images taken at close distances and with low magnification. However, in the cases of home-service robots, captured images generally are of low resolution and low quality. Therefore, previous face alignment research, such as eye detection, is not appropriate for robot environments. The main purpose of this paper is to provide a new and effective approach in the alignment of small and blurred faces. We propose a face alignment method using the confidence value of Real-AdaBoost with a modified census transform feature. We also evaluate the face recognition system to compare the proposed face alignment module with those of other systems. Experimental results show that the proposed method has a high recognition rate, higher than face alignment methods using a manually-marked eye position.

얼굴검출에 기반한 강인한 객체 추적 시스템 (Robust Object Tracking System Based on Face Detection)

  • 곽민석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권1호
    • /
    • pp.9-14
    • /
    • 2017
  • 최근 컴퓨터 기술의 발전과 함께 임베디드 기기 또한 다양한 기능을 갖추기 시작했다. 본 연구에서는 최근 활발하게 진행되고 있는 영상센서를 사용한 임베디드 기기 등 자원이 적은 기기에서 효율적인 얼굴 추적 방식을 제안한다. 정확한 얼굴을 얻기 위하여 MB-LBP 특징을 사용한 얼굴 검출 방식을 사용했으며, 다음 영상에서 얼굴 객체 추적을 위하여 얼굴 검출시 얼굴 주변 영역(Region of Interest)을 지정하였다. 그리고 얼굴을 검출을 못하는 영상에서는 기존의 객체 추적 방식인 CAM-Shift를 사용해 객체를 추적해 객체 정보의 손실 없이 정보를 유지할 수 있도록 하였다. 본 연구는 기존 연구와의 비교를 통하여 객체 추적 시스템의 정확성과 빠른 성능을 확인하였다.