• Title/Summary/Keyword: Small Device

Search Result 1,960, Processing Time 0.028 seconds

A Design and Implementation of Haptics Small Device User Interface using Zoomable User Interface (Zoomable User Interface를 이용한 햅틱 기술 기반 소형장비 사용자 인터페이스 설계 및 구현)

  • Yeom, Sae Hun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.3
    • /
    • pp.47-57
    • /
    • 2009
  • Computing environments are being more and more various due to the development of technologies. While existing computing environments used for fixed locations or particular purposes by requesting big scale monitors or complicate calculation performance, recent computing environments are used for a variety of locations and for a diversity of purposes by using various devices. Because of the needs, digital device convergence, which emphases portability and mobility, came out. However, almost researches for user interface are performed for big scale monitors or complicate calculation performance until now. By the reason, user interface on each small device is different from others, or is not appropriate for the purpose of small device. Therefore, this research is to design Zoomable User Interface (ZUI) that adapts for small devices by adding the existing user interface on small devices and haptic technologies, and to implement a user interface for PDA devices.

Design of small impact test device for concrete panels subject to high speed collision

  • Kim, Sanghee;Jeong, Seung Yong;Kang, Thomas H.K.
    • Advances in concrete construction
    • /
    • v.7 no.1
    • /
    • pp.23-30
    • /
    • 2019
  • Five key items were used to create an economical and physically small impact test device for concrete panels subject to high speed collision: an air-compressive system, carbon steel pipe, solenoid valve, carrier and carrier-blocking, and velocity measurement device. The impact test device developed can launch a 20 mm steel spherical projectile at over 200 m/s with measured impact and/or residual velocity. Purpose for development was to conduct preliminary materials tests, prior to large-scale collision experiments. In this paper, the design process of the small impact test device was discussed in detail.

Performance Analysis of Co- and Cross-tier Device-to-Device Communication Underlaying Macro-small Cell Wireless Networks

  • Li, Tong;Xiao, Zhu;Georges, Hassana Maigary;Luo, Zhinian;Wang, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1481-1500
    • /
    • 2016
  • Device-to-Device (D2D) communication underlaying macro-small cell networks, as one of the promising technologies in the era of 5G, is able to improve spectral efficiency and increase system capacity. In this paper, we model the cross- and co-tier D2D communications in two-tier macro-small cell networks. To avoid the complicated interference for cross-tier D2D, we propose a mode selection scheme with a dedicated resource sharing strategy. For co-tier D2D, we formulate a joint optimization problem of power control and resource reuse with the aim of maximizing the overall outage capacity. To solve this non-convex optimization problem, we devise a heuristic algorithm to obtain a suboptimal solution and reduce the computational complexity. System-level simulations demonstrate the effectiveness of the proposed method, which can provide enhanced system performance and guarantee the quality-of-service (QoS) of all devices in two-tier macro-small cell networks. In addition, our study reveals the high potential of introducing cross- and co-tier D2D in small cell networks: i) cross-tier D2D obtains better performance at low and medium small cell densities than co-tier D2D, and ii) co-tier D2D achieves a steady performance improvement with the increase of small cell density.

Development of a Stereotactic Device for Gamma Knife Irradiation of Small Animals

  • Chung, Hyun-Tai;Chung, Young-Seob;Kim, Dong-Gyu;Paek, Sun-Ha;Cho, Keun-Tae
    • Journal of Korean Neurosurgical Society
    • /
    • v.43 no.1
    • /
    • pp.26-30
    • /
    • 2008
  • Objective : The authors developed a stereotactic device for irradiation of small animals with Leksell Gamma Knife Model C. Development and verification procedures were described in this article. Methods : The device was designed to satisfy three requirements. The mechanical accuracy in positioning was to be managed within 0.5 mm. The strength of the device and structure were to be compromised to provide enough strength to hold a small animal during irradiation and to interfere the gamma ray beam as little as possible. The device was to be used in combination with the Leksell G-$frame^{(R)}$ and $KOPF^{(R)}$ rat adaptor. The irradiation point was determined by separate imaging sequences such as plain X-ray images. Results : The absolute dose rate with the device in a Leksell Gamma Knife was 3.7% less than the value calculated from Leksell Gamma $Plan^{(R)}$. The dose distributions measured with $GAFCHROMIC^{(R)}$ MD-55 film corresponded to those of Leksell Gamma $Plan^{(R)}$ within acceptable range. The device was used in a series of rat experiments with a 4 mm helmet of Leksell Gamma Knife. Conclusion : A stereotactic device for irradiation of small animals with Leksell Gamma Knife Model C has been developed so that it fulfilled above requirements. Absorbed dose and dose distribution at the center of a Gamma Knife helmet are in acceptable ranges. The device provides enough accuracy for stereotactic irradiation with acceptable practicality.

Electroluminescent Devices Using a Polymer of Regulated Conjugation Length and a Polymer Blend

  • Zyung, Tae-Hyoung;Jung, Sang-Don
    • ETRI Journal
    • /
    • v.18 no.3
    • /
    • pp.181-193
    • /
    • 1996
  • A blue light emitting device has been successfully fabricated using a polymer with regulated conjugation length containing trimethylsilyl substituted phenylenevinylene units. Electroluminescence from the device has an emission maximum at 470 nm. The device shows typical diode characteristics with operating voltage of 20 V and the light becomes visible at a current density of less than $0.5;mA/cm^2$. The electroluminescence spectrum is virtually identical with the photoluminescence spectrum, indicating that the radiation mechanisms are the same for both. A light emitting device using the blend of a large band gap polymer and a small band gap polymer was also fabricated. Light emission from the small band gap polymer shows much improved quantum efficiency, but there is no light emission from the large band gap polymer. Quantum efficiency of the blend increases up to about two orders of magnitude greater than that of the small band gap polymer with increasing proportion of the large band gap polymer. The improvement in quantum efficiency is interpreted in terms of exciton transfer and the hole blocking behaviour of the large band gap polymer. Finally, we have fabricated a patterned flexible light emitting device using the high quantum efficiency polymer blend system.

  • PDF

Development of Small-Specimen Creep Tester for Life Assessment of High Temperature Components of Power Plant (발전소 고온부의 수명 평가를 위한 소형 시편용 크리프 시험기의 개발)

  • Kim, Hyo-Jin;Jeong, Yong-Geun;Park, Jong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2597-2602
    • /
    • 2000
  • The most effective means of evaluating remaining life is through the creep testing of samples removed from the component. But sampling of large specimen from in-service component is actually impossible. So, sampling device and small-specimen creep tester have been applied. Sampling device has been devised to extract mechanically small samples by hemispherical, diamond -coated cutter from the surface of turbine rotor bores and thick-walled pipes without subsequent weld repairs requiring post weld heat treatment. A method of manufacturing small creep specimen, 2min gage diameter and 10min gage length, using electron beam welding to attach grip section, has been proven. Small-specimen creep tester has been designed to control atmosphere to prevent stress increment by oxidation during experiment. To determine whether the small specimens successfully reproduce the behavior of large specimens, creep rupture tests for small and large specimens have been performed at identical conditions. Creep rupture times based on small specimens have closely agreed within 5% error compared with that of large specimen. The errors in rupture time have decreased at longer test period. This comparison validates the procedure for fabricating and testing on small specimen. This technique offers potential as an efficient method for remaining life assessment by direct sampling from in -service high temperature components.

Automatic Distress Notification System Working with an External VHF Device in Small Ship (비상재난 발생 시 외부 VHF 장비와 연동하는 소형선박용 재난자동속보장치)

  • Jeong, Heon
    • Fire Science and Engineering
    • /
    • v.27 no.1
    • /
    • pp.14-19
    • /
    • 2013
  • In this paper, I have developed an automatic distress notification system (ADNS) working with an external VHF device in small ship. The proposed system is as part of a small ship disaster analysis system which can detect and quickly respond to the small ship disaster. The automatic notification system receives the location information signal from the disaster analysis system, and the signal will be converted into voice signal to broadcast of the accident position through external VHF device. It will be sending a distress message as form of voice information through VHF device until sinking under the water. Through this research, I expect we'll be make a quick response and prevent a terrible loss of human life.

Custom-Made ITE Type Hearing Protection Device Using a Small Acoustic Filter

  • Lee, Yun-Jung;Kim, Pil-Un;Jung, Young-Jin;Chang, Yong-Min;Cho, Jin-Ho;Kim, Myoung-Nam
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.376-383
    • /
    • 2006
  • Noise induced hearing loss (NIHS), the well-known occupational disease, is caused by continuous excessive noise. The prevention of NIHS is very important, because it is unrecoverable. There are some kinds of hearing protection device (HPD), and those are effective in preventing NIHS. But workers in noisy environment often resist to wearing them. Because they are ready - made products, so workers feel uncomfortable to wear. Also, they didn't maintain the conversation frequency range, so workers are hard to communicate in wearing them. To prevent hearing loss effectively, it is important that workers keep wearing HPD. Therefore, a HPD is needed to be comfortable to wear and be effective not only in hearing protection but also in preserving communication ability. So we proposed a custom - made hearing protection device in which a small acoustic filter is inserted. We designed several kinds of small acoustic filters and carried out some acoustic experiments for measuring characteristics of filters. We confirmed that acoustic transmission characteristic can be adjusted from experimental results using designed small acoustic filters. And we researched for the actual efficiency of a new developed custom - made hearing protection device using a small size acoustic filter. Also, we found out that workers are more satisfied with the new development than a former protection device from a workers' response.

An Accurate Small Signal Modeling of Cylindrical/Surrounded Gate MOSFET for High Frequency Applications

  • Ghosh, Pujarini;Haldar, Subhasis;Gupta, R.S.;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.377-387
    • /
    • 2012
  • An intrinsic small signal equivalent circuit model of Cylindrical/Surrounded gate MOSFET is proposed. Admittance parameters of the device are extracted from circuit analysis and intrinsic circuit elements are presented in terms of real and imaginary parts of the admittance parameters. S parameters are then evaluated and justified with the simulated data extracted from 3D device simulation.

Joint User Association and Resource Allocation of Device-to-Device Communication in Small Cell Networks

  • Gong, Wenrong;Wang, Xiaoxiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.1-19
    • /
    • 2015
  • With the recent popularity of smart terminals, the demand for high-data-rate transmission is growing rapidly, which brings a new challenge for the traditional cellular networks. Both device-to-device (D2D) communication and small cells are effective to improve the transmission efficiency of local communication. In this paper, we apply D2D communication into a small cell network system (SNets) and study about the optimization problem of resource allocation for D2D communication. The optimization problem includes system scheduling and resource allocation, which is exponentially complex and the optimal solution is infeasible to achieve. Therefore, in this paper, the optimization problem is decomposed into several smaller problems and a hierarchical scheme is proposed to obtain the solution. The proposed hierarchical scheme consists of three steps: D2D communication groups formation, the estimation of sub-channels needed by each D2D communication group and specific resource allocation. From numerical simulation results, we find that the proposed resource allocation scheme is effective in improving the spectral efficiency and reducing the outage probability of D2D communication.