• Title/Summary/Keyword: Small Crack Distribution

Search Result 50, Processing Time 0.024 seconds

A Study on the Statistical Characterisics of Fatigue Crack Propagation Rate in Turbine Rotor Steel(I) (터빈 로터강의 피로크랙전파속도의 확률특성 연구( I ))

  • 오세욱;이치우;정순호
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.83-92
    • /
    • 1987
  • Inorder ot estimate the running life of turbine rotors, fatigue crack propagation low, da/dN = C(${\DELTA}K)^m$, proposed by paris et al. has been widely applied. In this study, fatigue crack propagation rates for 16 samples of 1% Cr-Mo-V rotor steel were measured and statistical characteristics of m and C values in above equation were reviewed. The results are summarized as follows. 1. C and m follow a log-normal distribution and normal distribution, respectively. And the relation of C and shows a strong negative correlation. 2. Fatigue crack propagation equation can be expressed as da/dN=$4.11{\times}10^{-4}({\Delta}K/153.8)^m$, introducing the ralationship C=$C_oK_o^{-m}$. In this case, contribution of $C_o$ distribution to the distribution of log C shows very small compared to degrees of contribution by m.

  • PDF

Simulation of Stress Corrosion Crack Growth in Steam Generator Tubes (증기발생기 전열관에서의 응력부식균열 성장해석)

  • 신규인;박재학;김흥덕;정한섭
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.57-65
    • /
    • 2000
  • The stress corrosion crack growth is simulated assuming a small axial surface crack inside a S/G tube. Internal pressure and residual stresses are considered as applied forces. Stress intensity factors along crack front, variation of crack shape and crack growth rate are obtained and discussed. It is noted that the aspect ratio of the crack is not depend on the initial crack shape but depend on the residual stress distribution.

  • PDF

Evaluation of Fatigue Strain Intensity Factor on Fatigue Crack Propagation Rate (da/dN) (금속 재료의 피로 균열 전파 속도(da/dN) 평가를 위한 변형율 확대 계수의 유효성 검토)

  • 유재환;최재강;손종동
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.3-8
    • /
    • 1996
  • Fatigue fracture is the cyclic fracture phenomena at a very small local area near a crack tip. Therefore, the detailed quantitative experimental analysis about local cyclic strain distribution near a crack tip is prerequisite In order to make an effective parameter able to account for fatigue fracture problems. However, there are few reports on detailed quantitative experimental analysis of a local cyclic strain distribution near a crack tip, because of experimental difficulties. In this study, the distribution of local fatigue strains near a fatigue crack tip was in detail studied using by fine dot grid strain measurement method. From these results, a single parameter, which characterizes local fatigue strain field, was proposed. In addition, this parameter was applied to evaluate the fatigue crack propagation rate.

  • PDF

A Study on Crack Retardation Behavior by Single Overload (단일 과대하중에 의한 균열지연거동에 관한 연구)

  • 송삼홍;권윤기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.451-462
    • /
    • 1995
  • Single overload tests performed to examine the crack retardation behavior for the specimen thickness and overload ratios. Delayed crack length was tend to increase in small thickness and big overload ratio but was difference between delayed crack length and plastic zone size that expected in specimen thickness. So retardation behavior that estimated in plastic zone size, was not sufficient. Crack tip branching and striation distribution, secondary mechanisms that effected in retardation behavior, was examined by experiment and finite element analysis. Crack tip branching was affected by micro structure, and appeared the more complicatedly according to increasing damage by overload and decreasing crack driving force in base line stress level. And crack tip branching the branching angle decreased crack driving force in the crack tip. And a characteristic of the fractography on retardation zone was that striation distribution did not appear due to decreased crack driving force.

Finite element procedures for the numerical simulation of fatigue crack propagation under mixed mode loading

  • Alshoaibi, Abdulnaser M.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.283-299
    • /
    • 2010
  • This paper addresses the numerical simulation of fatigue crack growth in arbitrary 2D geometries under constant amplitude loading by the using a new finite element software. The purpose of this software is on the determination of 2D crack paths and surfaces as well as on the evaluation of components Lifetimes as a part of the damage tolerant assessment. Throughout the simulation of fatigue crack propagation an automatic adaptive mesh is carried out in the vicinity of the crack front nodes and in the elements which represent the higher stresses distribution. The fatigue crack direction and the corresponding stress-intensity factors are estimated at each small crack increment by employing the displacement extrapolation technique under facilitation of singular crack tip elements. The propagation is modeled by successive linear extensions, which are determined by the stress intensity factors under linear elastic fracture mechanics (LEFM) assumption. The stress intensity factors range history must be recorded along the small crack increments. Upon completion of the stress intensity factors range history recording, fatigue crack propagation life of the examined specimen is predicted. A consistent transfer algorithm and a crack relaxation method are proposed and implemented for this purpose. Verification of the predicted fatigue life is validated with relevant experimental data and numerical results obtained by other researchers. The comparisons show that the program is capable of demonstrating the fatigue life prediction results as well as the fatigue crack path satisfactorily.

Probabilistic Simulation for Extraction of Reliability Design Data (설계자료 추출을 위한 확률 시뮬레이션)

  • 김선진
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.2
    • /
    • pp.152-161
    • /
    • 1993
  • This paper deals with the effect of spatial distribution of material properties on its statistical characteristics and numerical estimation method of reliability of fatigue sensitive structures with respect to the fatigue crack growth. A method is proposed to determine experimentally the probability distribution functions of material parameters of Paris law. da/dN=C(ΔK/K sub(0) ) super(m), using stress intensity factor controlled fatigue tests. The result with a high tensile strength steel shows that the distribution of the parameter m is approximately normal and that of 1/C, is a 3-parameter Weibull. The main result obtained are : (1) The theoretical autocorrelation of the resistance, 1/C, to fatigue crack growth are almost same for different lengths. (2) The variance decreases with the increasing a averaging length. When spatial correlation length is very small. the variane decreases significantly were the averaging length. (3) The probability distribution of load cycles or the number for a crack to reach a certain length can be estimated using these functions by simulation of non-Gaussian(expecially Weibull) Stochastic Process.

  • PDF

Simulation of Stress Corrosion Crack Growth in Steam Generator Tubes (증기발생기 전열관에서의 응력부식 균열성장해석)

  • Shin, K.I.;Park, J.H.;Joo, J.W.;Shin, E.S.;Kim, H.D.;Chung, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.19-24
    • /
    • 2000
  • Stress corrosion crack growth is simulated after assuming a small axial surface crack inside a S/G tube. Internal pressure and residual stresses are considered as applied forces. Stress intensity factors along crack front, variation of crack shape and crack growth rate are obtained and discussed. It is noticed that the aspect ratio of the crack is not depend on the initial crack shape but depend on the residual stress distribution.

  • PDF

Behaviors of surface micro-crack of 304 stainless steel at elevated temperature (304스테인리스강의 고온표면미소 균열의 거동에 관한 기초적 연구)

  • 서창민;이정주;김영호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1320-1326
    • /
    • 1988
  • This paper deals with the behavior of surface crack growth and the characteristics of surface micro-crack distribution under creep and creep-fatigue with 1 min. and 10 min. of load holding times at 593.deg.C, in air. The test specimen is a plate type with a small artificial defect of type 304 the small defect has been carried out by the surface replica method and optical microphotography. The experimental results have been interpreted from the view-point of fracture mechanics. It can be concluded that the longer the hold time the longer the total life time. Most of surface micro-cracks initiate at grain boundaries before the specimen reaches 20% of its total life time, a few of them lead to fracture by coalescence with the main crack.

Study on Deformation Characteristics of Hole Expansion Test and Its Applicability (구멍확장시험의 변형특성 및 활용성 연구)

  • Han, S.S.;Lee, H.Y.
    • Transactions of Materials Processing
    • /
    • v.28 no.3
    • /
    • pp.154-158
    • /
    • 2019
  • The hole expansion tests using conical punch, flat punch or hemispherical punch are widely used for stretch flangeability verification of HSS. In this study, we investigate the strain distribution on the shear edges of the hole expansion test using grid marking and a projector. A small crack at the edge is distributed, resulting in a large gap between the HER and the crack strain. The strain distribution at the edges is irregular due to anisotropy of sheet metal. While an edge perpendicular to the rolling direction indicate a lower strain level compared to an edge parallel to the rolling direction, edge cracks occur at the edge perpendicular to the rolling direction. To predict the manifestation of edge cracks in FE analysis, the result of the hole expansion test with a crack strain measurement may well be a better tool than FLD. In this case, the level of strain and the direction of the edge relative to the rolling direction should be well considered.

A Stochastic Analysis of Variation in Fatigue Crack Growth of 7075-T6 Al alloy (7075-T6 A1 합금의 피로균열진전의 변동성에 대한 확률론적 해석)

  • Kim, Jung-Kyu;Shim, Dong-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2159-2166
    • /
    • 1996
  • The stochastic properties of variation in fatigue crack growth are important in reliability and stability of structures. In this study,the stochastic model for the variation of fatigue crack growth rate was proposed in consideration of nonhomogeneity of materials. For this model, experiments were ocnducted on 7075-T6 aluminum alloy under the constant stress intensity factor range. The variation of fatigue crack growth rate was expressed by random variables Z and r based on the variation of material coefficients C and m in the paris-Erodogan's equation. The distribution of fatigue life with respect to the stress intensity factor range was evaluated by the stochastic Markov chain model based on the Paris-Erdogan's equation. The merit of proposed model is that only a small number of test are required to determine this this function, and fatigue crack growth life is easily predicted at the given stress intensity factor range.