• Title/Summary/Keyword: Small Antenna

Search Result 562, Processing Time 0.019 seconds

Three dimensional GPR survey for the exploration of old remains at Buyeo area (부여지역 유적지 발굴을 위한 3차원 GPR 탐사)

  • Kim Jung-Bo;Son Jeong-Sul;Yi Myeong-Jong;Lim Seong-Keun;Cho Seong-Jun;Jeong Ji-Min;Park Sam-Gyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.49-69
    • /
    • 2004
  • One of the important roles of geophysical exploration in archeological survey may be to provide the subsurface information for effective and systematic excavations of historical remains. Ground Penetrating Radar (GPA) can give us images of shallow subsurface structure with high resolution and is regarded as a useful and important technology in archeological exploration. Since the buried cultural relics are the three-dimensional (3-D) objects in nature, the 3-D or areal survey is more desirable in archeological exploration. 3-D GPR survey based on the very dense data in principle, however, might need much higher cost and longer time of exploration than the other geophysical methods, thus it could have not been applied to the wide area exploration as one of routine procedures. Therefore, it is important to develop an effective way of 3-D GPR survey. In this study, we applied 3-D GPR method to investigate the possible historical remains of Baekje Kingdom at Gatap-Ri, Buyeo city, prior to the excavation. The principal purpose of the investigation was to provide the subsurface images of high resolution for the excavation of the surveyed area. Besides this, another purpose was to investigate the applicability and effectiveness of the continuous data acquisition system which was newly devised for the archeological investigation. The system consists of two sets of GPR antennas and the precise measurement device tracking the path of GPR antenna movement automatically and continuously Besides this hardware system, we adopted a concept of data acquisition that the data were acquired arbitrary not along the pre-established profile lines, because establishing the many profile lines itself would make the field work much longer, which results in the higher cost of field work. Owing to the newly devised system, we could acquire 3-D GPR data of an wide area over about $17,000 m^2$ as a result of the just two-days field work. Although the 3-D GPR data were gathered randomly not along the pre-established profile lines, we could have the 3-D images with high resolution showing many distinctive anomalies which could be interpreted as old agricultural lands, waterways, and artificial structures or remains. This case history led us to the conclusion that 3-D GPR method can be used easily not only to examine a small anomalous area but also to investigate the wider region of archeological interests. We expect that the 3-D GPR method will be applied as a one of standard exploration procedures to the exploration of historical remains in Korea in the near future.

  • PDF

Development of Acquisition and Analysis System of Radar Information for Small Inshore and Coastal Fishing Vessels - Suppression of Radar Clutter by CFAR - (연근해 소형 어선의 레이더 정보 수록 및 해석 시스템 개발 - CFAR에 의한 레이더 잡음 억제 -)

  • 이대재;김광식;신형일;변덕수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.347-357
    • /
    • 2003
  • This paper describes on the suppression of sea clutter on marine radar display using a cell-averaging CFAR(constant false alarm rate) technique, and on the analysis of radar echo signal data in relation to the estimation of ARPA functions and the detection of the shadow effect in clutter returns. The echo signal was measured using a X -band radar, that is located on the Pukyong National University, with a horizontal beamwidth of $$3.9^{\circ}$$, a vertical beamwidth of $20^{\circ}$, pulsewidth of $0.8 {\mu}s$ and a transmitted peak power of 4 ㎾ The suppression performance of sea clutter was investigated for the probability of false alarm between $l0-^0.25;and; 10^-1.0$. Also the performance of cell averaging CFAR was compared with that of ideal fixed threshold. The motion vectors and trajectory of ships was extracted and the shadow effect in clutter returns was analyzed. The results obtained are summarized as follows;1. The ARPA plotting results and motion vectors for acquired targets extracted by analyzing the echo signal data were displayed on the PC based radar system and the continuous trajectory of ships was tracked in real time. 2. To suppress the sea clutter under noisy environment, a cell averaging CFAR processor having total CFAR window of 47 samples(20+20 reference cells, 3+3 guard cells and the cell under test) was designed. On a particular data set acquired at Suyong Man, Busan, Korea, when the probability of false alarm applied to the designed cell averaging CFAR processor was 10$^{-0}$.75/ the suppression performance of radar clutter was significantly improved. The results obtained suggest that the designed cell averaging CFAR processor was very effective in uniform clutter environments. 3. It is concluded that the cell averaging CF AR may be able to give a considerable improvement in suppression performance of uniform sea clutter compared to the ideal fixed threshold. 4. The effective height of target, that was estimated by analyzing the shadow effect in clutter returns for a number of range bins behind the target as seen from the radar antenna, was approximately 1.2 m and the information for this height can be used to extract the shape parameter of tracked target..