• 제목/요약/키워드: Smad1

검색결과 152건 처리시간 0.021초

Smad에 의한 alkaline phosphatase 유전자의 발현 조절기전 (THE EFFECT OF BMP REGULATED SMAD PROTEIN ON ALKALINE PHOSPHATASE GENE EXPRESSION)

  • 김난진;류현모;김현정;김영진;남순현
    • 대한소아치과학회지
    • /
    • 제28권2호
    • /
    • pp.238-246
    • /
    • 2001
  • 본 실험은 탁월한 골유도능으로 관심의 대상이 되고 있는 BMP의 세포내 신호 전달자로 알려진 Smad 1과 Smad 5가 조골세포 초기 분화표지인자인 ALP 유전자의 발현에 미치는 영향 및 그 조절기전을 알아보고자 하였다. BMP 처리 없이도 Smad에 의해 ALP가 발현되는가를 알아보기 위해 Smad 1과 Smad 5가 각각 stably transfection된 C2C12 세포를 3일간 배양후 histochemical assay를 하였고, Smad 1과 Smad 5의 expression vector와 ALP promoter vector를 transient co-transfection한 후 ALP promoter activity를 측정하였다. Smad에 의한 BMP의 효과를 알아보기 위해서 100ng/ml의 BMP-2를 처리한 군과 처리하지 않은 군으로 나누어 세포를 배양한후 ALP 유전자의 발현을 northern blot analysis로 확인 하였다. Smad가 ALP 유전자의 발현을 직접적으로 조절하는가를 알아보기 위해서는 단백질 합성억제제인 cycloheximide를 전처리하여 ALP 유전자의 발현을 northern blot analysis하였다. 이상의 실험결과 다음과 같은 결론을 얻었다. $\cdot$ Smad 1과 Smad 5가 과발현된 세포에서는 BMP 처리없이도 ALP가 발현된다. $\cdot$ Smad 1과 Smad 5가 과발현된 세포에서 BMP 처리후 ALP 발현 증가율이 대조군 보다 현저히 높게 나타나 Smad가 BMP 효과를 증가시킨다는 것을 알 수 있다. $\cdot$ Smad는 새로운 단백질의 합성을 통해 ALP 유전자를 발현시킨다.

  • PDF

Bone Morphogenetic Protein 2-induced MAPKs Activation Is Independent of the Smad1/5 Activation

  • Jun, Ji-Hae;Ryoo, Hyun-Mo;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • 제34권2호
    • /
    • pp.115-121
    • /
    • 2009
  • Bone morphogenetic protein (BMP) 2 is a potent osteogenic factor. Although both Smad1/5 and mitogenactivated protein kinases (MAPKs) are activated by BMP2, the hierarchical relationship between them is unclear. In this study, we examined if BMP2-stimulated MAPK activation is regulated by Smad1/5 or vice versa. When C2C12 cells were treated with BMP2, the activation of extracellular signal-regulated kinase (ERK), p38 MAPK and c-Jun-N-terminal kinase was evident within 5 min. The knockdown of both Smad1 and Smad5 by small interfering RNA did not affect the activation of these MAPKs. In addition, neither the overexpression of Smad1 nor Smad5 induced ERK activation. When ERK activation was induced by constitutively active MEK1 expression, the protein level and activation of Smad1 increased. Furthermore, the inhibition of constitutively active BMP receptor type IB-induced ERK activation significantly suppressed Smad1 activation. These results indicate that Smad1/5 activation is not necessary for BMP2-induced MAPK activation and also that ERK positively regulates Smad1 activation.

Zinc upregulates bone-specific transcription factor Runx2 expression via BMP-2 signaling and Smad-1 phosphorylation in osteoblasts

  • Cho, Young-Eun;Kwun, In-Sook
    • Journal of Nutrition and Health
    • /
    • 제51권1호
    • /
    • pp.23-30
    • /
    • 2018
  • Purpose: Runx2 (runt-related transcription factor 2), a bone-specific transcription factor, is a key regulator of osteoblast differentiation and its expression is induced by the activation of BMP-2 signaling. This study examined whether zinc modulates BMP-2 signaling and therefore stimulates Runx2 and osteoblast differentiation gene expression. Methods: Two osteoblastic MC3T3-E1 cell lines (subclones 4 as a high osteoblast differentiation and subclone 24 as a low osteoblastic differentiation) were cultured in an osteogenic medium (OSM) as the normal control, Zn-($1{\mu}M$ Zn) or Zn+($15{\mu}M$ Zn) for 24 h. The genes and proteins for BMP-2 signaling (BMP-2, Smad-1/p-Smad-1), transcription factors (Runx2, osterix), and osteoblast differentiation marker proteins were assessed. Results: In both cell lines, BMP-2 mRAN and protein expression and extracellular BMP-2 secretion all decreased in Zn-. The expression of Smad-1 (downstream regulator of BMP-2 signaling) and p-Smad-1 (phosphorylated Smad-1) also downregulated in Zn-. Furthermore, the expression of the bone-specific transcription factors, Runx2 and osterix, decreased in Zn-, which might be due to the decreased BMP-2 expression and Smad-1 activation (p-Smad-1) by Zn-, because Runx2 and osterix both are downstream in BMP-2 signaling. Bone marker gene expression, such as alkaline phosphatase (ALP), collagen type I (COLI), osteocalcin, and osteopontin were also downregulated in Zn-. Conclusion: The results suggest that a zinc deficiency in osteoblasts suppresses the BMP-2 signaling pathway via the suppression of Smad-1 activation, and this suppressed BMP-2 signaling can cause poor osteoblast differentiation.

둥근성게(Strongylocentrotus nudus)의 Smad3와 Estrogen Receptor-related $Receptor\;{\beta}$ like 1 유전자 발현 (Gene Expression of Smad3 and Estrogen Receptor-related $Receptor\;{\beta}$ like 1 in Sea Urchin, Strongylocentrotus nudus)

  • 정유정;손영창
    • 한국발생생물학회지:발생과생식
    • /
    • 제11권1호
    • /
    • pp.43-47
    • /
    • 2007
  • Transforming growth $factor-{\beta}(TGF-{\beta})$ 신호의 매개자 역할을 하는 Smad 계열 단백질은 발생과정에 중요한 역할을 한다고 알려져 있다. Estrogen receptor(ER)와 구조적으로 유사한 estrogen receptor-related receptor(ERR)은 포유동물에서 후기 배발생기에 외배엽 형성과 관련이 되어 있는 고아핵수용체이다. 본 연구에서는 해양무척추동물의 초기발생과정과 계절번식기 동안에 Smad3와 ERR의 유전자 발현이 발생과정과 성숙에 어떠한 연관성을 갖고 있는지 알아보기 위하여, 동해안 연안에 주로 서식하는 극피동물문 둥근성게과 둥근성게(Strongylocentrotus nudus)를 재료로 하여 계절별 및 배발생 과정중에 Smad3와 $ERR{\beta}$ like 1의 mRNA 농도를 real-time PCR 방법으로 조사하였다. Smad3 mRNA는 샘플링을 시작한 2004년 2월의 생식소와 비교하면 4월부터 그 농도가 증가하기 시작하여 6월까지 증가하였으며, 산란기인 8월에 감소하였다가 10월부터 12월까지 높은 수준을 유지하였다. $ERR{\beta}$ like 1 mRNA는 6월까지 낮은 수준이었으나, 산란기인 8월에 급증한 후 다시 감소하였다. 수정란부터 초기 유생기까지 발생과정을 분석한 결과, Smad3 mRNA는 8세포기 및 16세포기에 높은 발현이 관측되었다. 한편, $ERR{\beta}$ like 1 mRNA는 포배기, 낭배기, 초기 유생기에 현저하게 높은 발현패턴을 보였다. 이상의 결과로부터 둥근성게의 산란기 및 발생배의 발생후기에 $ERR{\beta}$ like 1이 중요한 역할을 담당할 것으로 추정되며, 초기 난할시기에는 Smad3의 관련성이 시사되었다.

  • PDF

Smad4 mediates malignant behaviors of human ovarian carcinoma cell through the effect on expressions of E-cadherin, plasminogen activator inhibitor-1 and VEGF

  • Chen, Chen;Sun, Ming-Zhong;Liu, Shuqing;Yeh, Dongmei;Yu, Lijun;Song, Yang;Gong, Linlin;Hao, Lihong;Hu, Jun;Shao, Shujuan
    • BMB Reports
    • /
    • 제43권8호
    • /
    • pp.554-560
    • /
    • 2010
  • Smad4 is involved in cancer progression and metastasis. Using a pair of human syngeneic epithelial ovarian cancer cells with low (HO-8910) and high (HO-8910PM) metastatic abilities, we aimed to reveal the role of Smad4 in ovarian cancer metastasis in vitro. Smad4 was down-regulated in HO-8910PM cell line relative to HO-8910 by implicating Smad4 was probably a potential tumor suppressor gene for ovarian cancer. Re-expression of Smad4 decreased the migration ability and inhibited the invasion capacity of HO-8910PM, while promoted the cell adhesion capacity for HO-8910PM. The stable expression of Smad4 increased the expression of E-cadherin, reduced the expression of plasminogen activator inhibitor-1 (PAI-1) and slightly down-regulated the expression of VEGF. Smad4 suppresses human ovarian cancer cell metastasis potential through its effect on the expressions of PAI-1, E-cadherin and VEGF. Results from current work implicate Smad4 might suppress the invasion and metastasis of human ovarian tumor cells through a TGF-$\beta$/Smad-mediated pathway.

음양곽(淫羊藿) 열수 추출물의 Smad 신호 억제를 통한 간성상세포의 활성 조절 (Epimedium koreanum Nakai Water Extract Regulates Hepatic Stellate Cells Activation through Inhibition of Smad Signaling Pathway)

  • 정지윤;민병구;박정아;변성희;조일제;김상찬
    • 대한한의학방제학회지
    • /
    • 제26권3호
    • /
    • pp.183-193
    • /
    • 2018
  • Objectives : In Traditional Korean Medicine, Epimedium koreanum Nakai has diverse pharmacological activities to treat impotence, forgetfulness, cataract and exophthalmos. Present study investigated anti-fibrogenic effects of E. koreanum water extract (EKE) in hepatic stellate cells (HSCs). Methods : To study anti-fibrogenic effects of EKE, LX-2 cells, a human immortalized HSCs, were pre-treated with $3-300{\mu}g/mL$ of EKE, and then subsequently exposed to 5 ng/mL of transforming growth $factor-{\beta}1$ ($TGF-{\beta}1$). Expression level of ${\alpha}-smooth$ muscle actin was determined by immunoblot analysis. Phosphorylation of Smad, transactivation of Smad, and expression of plasminogen activator inhibitor-1 (PAI-1) were monitored to investigate the effect of EKE on $TGF-{\beta}1-mediated$ signaling pathway. Results : Up to $100{\mu}g/mL$, EKE did not show any cytotoxicity on LX-2 cells. Pre-treatment of EKE ($100{\mu}g/mL$) significantly inhibited ${\alpha}-smooth$ muscle actin expression induced by $TGF-{\beta}1$. In addition, EKE significantly decreased Smad2 and Smad3 phosphorylations, Smad binding element-driven luciferase activity and PAI-1 expression by $TGF-{\beta}1$. Of three flavonoid compounds found in EKE, only quercertin ($30{\mu}M$) attenuated $TGF-{\beta}1-mediated$ PAI-1 expression. Conclusion : These results suggest that EKE has an ability to suppress fibrogenic process in HSCs via inhibition of $TGF-{\beta}1/Smad$ signaling pathway.

Transforming Growth Factor β1/Smad4 Signaling Affects Osteoclast Differentiation via Regulation of miR-155 Expression

  • Zhao, Hongying;Zhang, Jun;Shao, Haiyu;Liu, Jianwen;Jin, Mengran;Chen, Jinping;Huang, Yazeng
    • Molecules and Cells
    • /
    • 제40권3호
    • /
    • pp.211-221
    • /
    • 2017
  • Transforming growth factor ${\beta}1$ $(TGF{\beta}1)/Smad4$ signaling plays a pivotal role in maintenance of the dynamic balance between bone formation and resorption. The microRNA miR-155 has been reported to exert a significant role in the differentiation of macrophage and dendritic cells. The goal of this study was to determine whether miR-155 regulates osteoclast differentiation through $TGF{\beta}1/Smad4$ signaling. Here, we present that $TGF{\beta}1$ elevated miR-155 levels during osteoclast differentiation through the stimulation of M-CSF and RANKL. Additionally, we found that silencing Smad4 attenuated the upregulation of miR-155 induced by $TGF{\beta}1$. The results of luciferase reporter experiments and ChIP assays demonstrated that $TGF{\beta}1$ promoted the binding of Smad4 to the miR-155 promoter at a site located in 454 bp from the transcription start site in vivo, further verifying that miR-155 is a transcriptional target of the $TGF{\beta}1/Smad4$ pathway. Subsequently, TRAP staining and qRT-PCR analysis revealed that silencing Smad4 impaired the $TGF{\beta}1$-mediated inhibition on osteoclast differentiation. Finally, we found that miR-155 may target SOCS1 and MITF to suppress osteoclast differentiation. Taken together, we provide the first evidence that $TGF{\beta}1/Smad4$ signaling affects osteoclast differentiation by regulation of miR-155 expression and the use of miR-155 as a potential therapeutic target for osteoclast-related diseases shows great promise.

SUMO Proteins are not Involved in TGF-${\beta}1$-induced, Smad3/4-mediated Germline ${\alpha}$ Transcription, but PIASy Suppresses it in CH12F3-2A B Cells

  • Lee, Sang-Hoon;Kim, Pyeung-Hyeun;Oh, Sang-Muk;Park, Jung-Hwan;Yoo, Yung-Choon;Lee, Junglim;Park, Seok-Rae
    • IMMUNE NETWORK
    • /
    • 제14권6호
    • /
    • pp.321-327
    • /
    • 2014
  • TGF-${\beta}$ induces IgA class switching by B cells. We previously reported that Smad3 and Smad4, pivotal TGF-${\beta}$ signal-transducing transcription factors, mediate germline (GL) ${\alpha}$ transcription induced by TGF-${\beta}1$, resulting in IgA switching by mouse B cells. Post-translational sumoylation of Smad3 and Smad4 regulates TGF-${\beta}$-induced transcriptional activation in certain cell types. In the present study, we investigated the effect of sumoylation on TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ transcription and IgA switching by mouse B cell line, CH12F3-2A. Overexpression of small ubiquitin-like modifier (SUMO)-1, SUMO-2 or SUMO-3 did not affect TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ promoter activity, expression of endogenous $GL{\alpha}$ transcripts, surface IgA expression, and IgA production. Next, we tested the effect of the E3 ligase PIASy on TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ promoter activity. We found that PIASy overexpression suppresses the $GL{\alpha}$ promoter activity in cooperation with histone deacetylase 1. Taken together, these results suggest that SUMO itself does not affect regulation of $GL{\alpha}$ transcription and IgA switching induced by TGF-${\beta}1$/Smad3/4, while PIASy acts as a repressor.

Itch E3 Ubiquitin Ligase Positively Regulates TGF-β Signaling to EMT via Smad7 Ubiquitination

  • Park, Su-Hyun;Jung, Eun-Ho;Kim, Geun-Young;Kim, Byung-Chul;Lim, Jae Hyang;Woo, Chang-Hoon
    • Molecules and Cells
    • /
    • 제38권1호
    • /
    • pp.20-25
    • /
    • 2015
  • TGF-${\beta}$ regulates pleiotropic cellular responses including cell growth, differentiation, migration, apoptosis, extracellular matrix production, and many other biological processes. Although non-Smad signaling pathways are being increasingly reported to play many roles in TGF-${\beta}$-mediated biological processes, Smads, especially receptor-regulated Smads (R-Smads), still play a central mediatory role in TGF-${\beta}$ signaling for epithelial-mesenchymal transition. Thus, the biological activities of R-Smads are tightly regulated at multiple points. Inhibitory Smad (I-Smad also called Smad7) acts as a critical endogenous negative feedback regulator of Smad-signaling pathways by inhibiting R-Smad phosphorylation and by inducing activated type I TGF-${\beta}$ receptor degradation. Roles played by Smad7 in health and disease are being increasingly reported, but the molecular mechanisms that regulate Smad7 are not well understood. In this study, we show that E3 ubiquitin ligase Itch acts as a positive regulator of TGF-${\beta}$ signaling and of subsequent EMT-related gene expression. Interestingly, the Itch-mediated positive regulation of TGF-${\beta}$ signaling was found to be dependent on Smad7 ubiquitination and its subsequent degradation. Further study revealed Itch acts as an E3 ubiquitin ligase for Smad7 polyubiquitination, and thus, that Itch is an important regulator of Smad7 activity and a positive regulator of TGF-${\beta}$ signaling and of TGF-${\beta}$-mediated biological processes. Accordingly, the study uncovers a novel regulatory mechanism whereby Smad7 is controlled by Itch.

Histological Changes of Cervical Disc Tissue in Patients with Degenerative Ossification

  • Xiong, Yang;Yang, Ying-Li;Gao, Yu-Shan;Wang, Xiu-Mei;Yu, Xing
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권2호
    • /
    • pp.186-195
    • /
    • 2022
  • Objective : To explore the histological feature of the cervical disc degeneration in patients with degenerative ossification (DO) and its potential mechanisms. Methods : A total of 96 surgical segments, from cervical disc degenerative disease patients with surgical treatment, were divided into ossification group (group O, n=46) and non-ossification group (group NO, n=50) based on preoperative radiological exams. Samples of disc tissues and osteophytes were harvested during the decompression operation. The hematoxylin-eosin staining, Masson trichrome staining and Safranin O-fast green staining were used to compare the histological differences between the two groups. And the distribution and content of transforming growth factor (TGF)-β1, p-Smad2 and p-Smad3 between the two groups were compared by a semi-quantitative immunohistochemistry (IHC) method. Results : For all the disc tissues, the content of disc cells and collagen fibers decreased gradually from the outer annulus fibrosus (OAF) to the central nucleus pulposus (NP). Compared with group NO, the number of disc cells in group O increased significantly. But for proteoglycan in the inner annulus fibrosus (IAF) and NP, the content in group O decreased significantly. IHC analysis showed that TGF-β1, p-Smad2, and p-Smad3 were detected in all tissues. For group O, the content of TGF-β1 in the OAF and NP was significantly higher than that in group NO. For p-Smad2 in IAF and p-Smad3 in OAF, the content in group O were significantly higher than group NO. Conclusion : Histologically, cervical disc degeneration in patients with DO is more severe than that without DO. Local higher content of TGF-β1, p-Smad2, and p-Smad3 are involved in the disc degeneration with DO. Further studies with multi-approach analyses are needed to better understand the role of TGF-β/Smads signaling pathway in the disc degeneration with DO.