• Title/Summary/Keyword: Slurry temperature

Search Result 392, Processing Time 0.023 seconds

Hydrothermal Reduction of $\Co(OH)_2$ to Cobalt Powder Preparation ($Co(OH)_2$로부터 수열법에 의한 코발트 분말제조)

  • Kim, Dong-Jin;Chung, Hun-Saeng;Yu Kening
    • Korean Journal of Materials Research
    • /
    • v.9 no.7
    • /
    • pp.675-679
    • /
    • 1999
  • An investigation was performed to prepare spherical cobalt powder with about particle size of 400nm from aqueous cobalt hydroxide slurry under hydrothermal reduction conditions using palladium chloride as a catalyst. The reduction kinetics was in good agreement with a surface reaction core model equation. and the activation energy obtained from Arrhenius plots was 55.6 KJ/mol at the temperature range of $145~195^{\circ}C$. Additionally, the study showed that the cobalt reduction rate is proportional to the initial hydrogen pressure with a reaction order of n=0.63. which corresponds to the gas chemisorption reaction type.

  • PDF

Morphological Analysis of Engineered PCC by Gas-Liquid Mixing Conditions (기체-액체 혼합조건에 따른 Engineered PCC의 형태학적 분석)

  • Lee, Tai-Ju;Seo, Jin-Ho;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.113-120
    • /
    • 2011
  • Precipitated calcium carbonate(PCC), particularly calcite crystal, is extensively used as a pigment, filler or extender in various industries such as paper, paint, textile, detergents, adhesives, rubber and plastics, food, cosmetics, and biomaterials. PCC is conventionally produced through the gas-liquid carbonation process, which consists on bubbling gaseous $CO_2$ through a concentrated calcium hydroxide slurry. This study is aimed to find some factors for controlling the morphology of engineered PCC in lab-scaled mixing batch. The experimental designs were based on temperature variables, $Ca(OH)_2$ concentration, $CO_2$ flow rate, and electrical conductivity. The model of engineered PCC morphology was finally controlled by adjustment of electrical conductivity(6.0~7.0 mS/cm) and $Ca(OH)_2$ concentration(10 g/L). Orthorhombic calcite crystals were mostly created at high concentration and electrical conductivity conditions because the increased ratio of $Ca^{2+}$ and $CO{_3}^{2-}$ ions affects the growth rate of orthorhombic faces. Excess calcium spices were contributed to the growth of faces in calcium carbonate crystal, and the non-stoichiometric reaction was occurred between $Ca^{2+}$ and $CO{_3}^{2-}$ ions during carbonation process.

Synthsis of $CuInSe_2$ nanoparticles and its application to the absorber layer for thin films solar cells ($CuInSe_2$ 나노 입자 합성 및 이를 이용한 광흡수층 박막 제조)

  • Kim, Kyun-Hwan;Ahn, Se-Jin;Yun, Jae-Ho;Gwak, Ji-Hye;Jo, A-Ra;Kim, Do-Jin;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.396-396
    • /
    • 2009
  • Chalcopyrite semiconductor $CuInSe_2$ nanoparticles were prepared using a low temperature colloidal route by reacting the starting materials (CuI, $InI_3$ and $Na_2Se$) in solvents. After synthesised $CuInSe_2$ nanoparticles precursors were mixed with organic binder for the viscosity of the precursor slurry to be suitable for the doctor blade method. The mixture of $CuInSe_2$ and binder was deposited onto molybdenum-coated sodalime glass substrates to form thin film. The precursor thin films were preheated on the hot plate to remove remaining solvents and binder material. After subsequent thermal processing of the thin film under a selenium ambient, $CuInSe_2$ absorber layer with grain size significantly lager than that of the nanoparticles was formed.

  • PDF

Fabrication of Porous Al2O3 Film by Freeze Tape Casting (냉동 후막 성형에 의한 다공성 Al2O3 필름 제조)

  • Shin, Ran-Hee;Koo, Jun-Mo;Kim, Young-Do;Han, Yoon-Soo
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.438-442
    • /
    • 2015
  • Porous thick film of alumina which is fabricated by freeze tape casting using a camphene-camphor-acrylate vehicle. Alumina slurry is mixed above the melting point of the camphene-camphor solvent. Upon cooling, the camphene-camphor crystallizes from the solution as particle-free dendrites, with the $Al_2O_3$ powder and acrylate liquid in the interdendritic spaces. Subsequently, the acrylate liquid is solidified by photopolymerization to offer mechanical properties for handling. The microstructure of the porous alumina film is characterized for systems with different cooling rate around the melting temperature of camphor-camphene. The structure of the dendritic porosity is compared as a function of ratio of camphene-camphor solvent and acrylate content, and $Al_2O_3$ powder volume fraction in acrylate in terms of the dendrite arm width.

Thermal Storage and Thermodynamic Characteristics of Phase Change Materials Slurries

  • Kwon, Ki-Hyun;Jeong, Jin-Woong;Kim, Jong-Hoon;Kim, Yong-Joo;Choi, Chang-Hyun
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1392-1397
    • /
    • 2009
  • This study was aimed at developing a low cost cold storage system for agricultural products. Three kinds of slurries: $K_1$, $K_2$, and $K_3$ slurries were developed using phase change materials (PCMs) such as tetradecane, octadecane, and sodium polyacrylate to maintain the desired temperature ranges. The slurries were manufactured by in-situ polymerization. Tetradecane and octadecane were capsulated in a core with melamine at the surface. The thermodynamic characteristics of the slurries were measured and analyzed. The latent heats of the $K_1$, $K_2$, and $K_3$ slurries at the melting points were 206.41, 186.88, and 147.91 kJ/kg, respectively. A transportable cold storage container was built to investigate the performance of the slurries as thermal storage media. The temperatures at the insides of the container could be maintained in the ranges of 0-5, 5-10, and $10-15^{\circ}C$ for more than 23, 27, and 60 hr with the $K_1$, $K_2$, and $K_3$ slurries, respectively.

A Study on Bloating of Porous Foam by Pressure Infiltration with H2O2 (과산화수소의 가압침투에 의한 다공성 발포체에 관한 연구)

  • Kim, Gui-Shik;Jeong, Ji-Hyun
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.86-91
    • /
    • 2016
  • This paper is concerned chiefly with the method of porous foam manufacture using basalt stone powder sludge. The hydrogen peroxide($H_2O_2$) of bloating agent has lots of problems to manufacture porous lightweight aggregate due to fast reaction rate with cement or calcium hydroxide($Ca(OH)_2$). The $H_2O_2$ injecting method using nozzle for manufacturing porous lightweight aggregate is proposed, in this study. This method is to inject $H_2O_2$ at the pressure of 10 MPa on upper side of slurry mixing materials such as stone powder sludge and quick-lime(CaO) by injector. The specimen was dried in furnace at $100^{\circ}C$ for 1 hour and cured at ambient temperature for 30 days. We analyzed the characteristics including specific gravity and water absorption. The experiments were found that the porous foam has low specific gravity, high water absorption and uniform distribution of porous more than manufactured foam by general bloating methods.

Phytogenic silver nanoparticles (Alstonia scholaris) incorporated with epoxy coating on PVC materials and their biofilm degradation studies

  • Supraja, Nookala;Tollamadugu, Naga Venkata Krishna Vara Prasad;Adam, S.
    • Advances in nano research
    • /
    • v.4 no.4
    • /
    • pp.281-294
    • /
    • 2016
  • The advantages of nano-scale materials (size 1-99 nm in at least in one dimension) could be realized with their potential applications in diversified avenues. Herein, we report for the first time on the successful synthesis of homogeneous epoxy coatings containing phytogenic silver nanoparticles (Ag) on PVC and glass substrates by room-temperature curing of fully mixed epoxy slurry diluted by acetone. Alstonia scholaris bark extract was used to reduce and stabilize the silver ions. The surface morphology and mechanical properties of these coatings were characterized using the techniques like, UV-Vis (UV-Visible) spectrophotometry, X-ray diffraction (XRD), Fourier transform infrared spectrophotometry (FT-IR), Epifluorescence microscopy and scanning electron microscopy (SEM). The effect of incorporating Ag nanoparticles on the biofilm (scale) resistant epoxy-coated PVC was investigated by total viable counts ($CFU/cm^2$) from epoxy coating from (Initial) $1^{st}$ day to $25^{th}$ days. The phytogenic Ag nanoparticles were found to be significantly improving the microstructure of the coating matrix and thus enhanced the anti-biofilm performance of the epoxy coating. In addition, the antimicrobial mechanism of Ag nanoparticles played an important role in improving the anti-biofilm performance of these epoxy coatings.

Lanthanum Nickelates with a Perovskite Structure as Protective Coatings on Metallic Interconnects for Solid Oxide Fuel Cells

  • Waluyo, Nurhadi S.;Park, Beom-Kyeong;Song, Rak-Hyun;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Lee, Jong-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.344-349
    • /
    • 2015
  • An interconnect is the key component of solid oxide fuel cells that electrically connects unit cells and separates fuel from oxidant in the adjoining cells. To improve their surface stability in high-temperature oxidizing environments, metallic interconnects are usually coated with conductive oxides. In this study, lanthanum nickelates ($LaNiO_3$) with a perovskite structure are synthesized and applied as protective coatings on a metallic interconnect (Crofer 22 APU). The partial substitution of Co, Cu, and Fe for Ni improves electrical conductivity as well as thermal expansion match with the Crofer interconnect. The protective perovskite layers are fabricated on the interconnects by a slurry coating process combined with optimized heat-treatment. The perovskite-coated interconnects show area-specific resistances as low as $16.5-37.5m{\Omega}{\cdot}cm^2$ at $800^{\circ}C$.

Development of Alkali Metal Thermal-to-Electric Converter Unit Cells Using Mo/TiN Electrode

  • Seog, Seung-won;Choi, Hyun-Jong;Kim, Sun-Dong;Lee, Wook-Hyun;Woo, Sang-Kuk;Han, Moon-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.200-204
    • /
    • 2017
  • Molybdenum (Mo), an electrode material of alkali metal thermal-to-electric converters (AMTEC), facilitates grain growth behavior and forms Mo-Na-O compounds at high operating temperatures, resulting in reduced performance and shortened lifetime of the cell. Mo/TiN composite materials have been developed to provide a solution for such issues. Mo is a metal that possesses excellent electrical properties, and TiN is a ceramic compound with high-temperature durability and catalytic activity. In this study, a dip-coating process with an organic solvent-based slurry was used as an optimal coating method to achieve homogeneity and stability of the electrodes. Cell performance was evaluated under various conditions such as the number of coatings, ranging from 1 to 3 times, and heat treatment temperatures of $800-1100^{\circ}C$. The results confirmed that the cell yielded a maximum power of 9.99 W for the sample coated 3 times and heat-treated at $900^{\circ}C$.

Synthesis of Nano-Size BaTiO3 Powder by Hydrothermal Reaction Method (수열합성법을 이용한 BaTiO3 나노분말 합성)

  • Shim, Young-Jae;Choi, Gyoung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.9
    • /
    • pp.561-564
    • /
    • 2015
  • Nano-size $BaTiO_3$ powder was synthesized by relatively simple hydrothermal reaction method. Finely dispersed Ti hydroxide precursor was first precipitated using $Ti(SO_4)_2$ and NaOH solution by applying ultrasonic power and washed thoroughly to remove $SO_4{^{2-}}$ and $Na^+$ ion. Then hydrothermal reaction was done at $160^{\circ}C$ for 6 hrs using solution prepared by washed Ti hydroxide precursor slurry and $Ba(OH)_2{\cdot}8H_2O$ with Ti:Ba mole ratio of 1:1. 200 ~ 500 nm size and uniform size distributed $BaTiO_3$ powder was synthesized by relatively low temperature and simple process.