• Title/Summary/Keyword: Slump Test

Search Result 406, Processing Time 0.034 seconds

A simple test method to assess slump flow and stability of self-compacting concrete

  • Bouziani, Tayeb
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.111-116
    • /
    • 2018
  • Establishment of test methods to assess the fresh properties of self-compacting concrete (SCC) are required to ensure the homogeneity in fresh and hardened states. This paper discusses the suitability of a simple test method for assessing the slump flow and stability of SCC by testing on self-compacting mortar (SCM) fraction. The proposed test method aims at investigating slump flow diameter test and sieve stability test of SCC by testing SCM fraction with a plunger penetration apparatus. A central composite modeling design was performed to evaluate the effects of water/cement ratio (W/C), superplasticizer dosage (SP) and powder marble content (MP) on slump flow diameter, stability and plunger penetration test of fresh SCC. The responses of the derived statistical models are slump flow (Sf), sieve stability (S) and plunger penetration (P). Relationships obtained in this study show acceptable correlations between plunger penetration test value and slump flow diameter test results and stability. It should note that the developed relationships are very useful to predict slump flow diameter and stability of studied SCC mixtures by carrying out a simple plunger penetration test on its mortar, which can save labour and time in laboratory experiments.

Simulation of Aggregate Slump Test Using Equivalent Sphere Particle in DEM (등가 구형입자를 이용한 DEM에서의 골재 슬럼프 실험 모사)

  • Yun, Tae Young;Ahn, Sang Hyeok;Nam, Jueong Hee;Yoo, Pyeong Jun
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.21-29
    • /
    • 2013
  • PURPOSES: Simulation of aggregate slump test using equivalent sphere particle in DEM and its validity evaluation against lab aggregate slump test METHODS : In this research, aggregate slump tests are performed and compared with DEM simulation. To utilize spheric particles in YADE, equivalent sphere diameter concept is applied. As verification measures, the volume in slump cone filled with aggregate is used and it is compared with volume in slump cone filled with equivalent sphere particle. Slump height and diameter are also used to evaluate the suggested numerical method with equivalent concept RESULTS : Simulation test results show good agrement with lab test results in terms of loose packing volume, height and diameter of slumped particle clump. CONCLUSIONS : It is concluded that numerical simulation using DEM is applicable to evaluate the effect of aggregate morphological property in loose packing and optimum gradation determination based on the aggregate slump test simulation result.

Effect of coarse aggregates and sand contents on workability and static stability of self-compacting concrete

  • Mohamed, Sahraoui;Taye, Bouziani
    • Advances in concrete construction
    • /
    • v.7 no.2
    • /
    • pp.97-105
    • /
    • 2019
  • In this paper, the workability and static stability were evaluated using a proposed test method. Workability and static stability represent a key property of self-compacting concrete (SCC) in fresh state. A number of standardized test methods were developed to assess these properties. However, no accelerated test method reliably predicts both workability and static stability of SCC. In the present work, a modified K-slump test method was developed to evaluate workability and static stability of SCC. In order to take implicit mixture variations of SCC constituents that can affect fresh SCC properties, a central composite design was adopted to highlight the effect of gravel to sand ratio (G/S), gravel 3/8 to gravel 8/15 ratio (G1/G2), water to cement ratio (W/C), marble powder to cement ratio (MP/C) and superplasticizer content (SP) on workability measured with slump and flow time (T50) tests and static stability measured with sieve stability test (Pi), segregation test index (SSI), Penetration test (Pd) and the proposed K-slump test (Km). The obtained results show that G/S ratio close to 1 and G1/G2 ratio close to 60% can be considered as optimal values to achieve a good workability while ensuring a sufficient static stability of SCC. Acceptable relationships were obtained between Slump flow, Pi, Pd and Km. Results show that the proposed K-slump test allow to assess both workability and static stability of fresh SCC mixtures.

Modelling the rheological behaviour of fresh concrete: An elasto-viscoplastic finite element approach

  • Chidiac, S.E.;Habibbeigi, F.
    • Computers and Concrete
    • /
    • v.2 no.2
    • /
    • pp.97-110
    • /
    • 2005
  • Rheological behaviour of fresh concrete is an important factor in controlling concrete quality. It is recognized that the measurement of the slump is not a sufficient test method to adequately characterize the rheology of fresh concrete. To further understand the slump measurement and its relationship to the rheological properties, an elasto-viscoplastic, 2-D axisymmetric finite element (FE) model is developed. The FE model employs the Bingham material model to simulate the flow of a slump test. An experimental program is carried out using the Slump Rate Machine (SLRM_II) to evaluate the finite element simulation results. The simulated slump-versus-time curves are found to be in good agreement with the measured data. A sensitivity study is performed to evaluate the effects of yield stress, plastic viscosity and cone withdrawal rate on the measured flow curve using the FE model. The results demonstrate that the computed yield stress compares well with reported experimental data. The flow behaviour is shown to be influenced by the yield stress, plastic viscosity and the cone withdrawal rate. Further, it is found that the value of the apparent plastic viscosity is different from the true viscosity, with the difference depending on the cone withdrawal rate. It is also confirmed that the value of the final slump is most influenced by the yield stress.

Effect of Flat and Elongated Particles in Coarse Aggregates on Properties of Concrete (굵은골재의 편장석 함유량이 콘크리트의 성능에 미치는 영향)

  • Won , Jong-Pil;Cho, Yong-Chin;Park , Kwang-Su;Shin , Su-Gyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.2
    • /
    • pp.49-57
    • /
    • 2004
  • Generally, the properties of aggregate greatly affect the physical and mechanical properties of concrete. Flat and elongated particles in coarse aggregates, for some construction uses, may interfere with consolidation and be difficult to place. In this study, an experiment to evaluate properties of flat and elongated particles as coarse aggregate in concrete was conducted. The experiments include slump test, air content test and compressive strength test. The test result of slump and change of slump was rapidly decreased by percentage of flat and elongated particles. But it had not a trend by increasing percentage of flat and elongated particles. Compressive strength of hardened concrete does not make any differences in comparison.

Estimation of Undrained Shear Strength of Very Soft Clay with the Slump Test (슬럼프 실험에 의한 초연약점토의 비배수전단강도 산정)

  • Noh, Tae-Kil;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.2
    • /
    • pp.17-24
    • /
    • 2009
  • Undrained shear strength is estimated from laboratory tests generally, but the very soft or fluid material is generally incompatible with the test setup. In-situ methods require test to be accomplished at discrete time intervals, which does not provide a method to predict strength increment as a function of time for an ongoing project. Therefore, correlation between slump test value and undrained shear strength was derived through the regression analysis of slump test and laboratory vane shear test results. For the reliability of derived correlation equation statistical analysis using the t-distribution was performed and the comparison between the results of in-situ test and laboratory experiments demonstrated the applicability of the derived correlation.

Review on Analytical Solutions for Slump Flow of Cement Paste (시멘트 페이스트의 슬럼프 유동 모사를 위한 분석적 해의 검토)

  • Yun, Taeyoung
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.21-32
    • /
    • 2016
  • PURPOSES : In this paper, the analytical solutions suggested to simulate the behavior of rheological fluids were rigorously re-derived and investigated for fixed conditions to evaluate the applicability for the solutions on a mini-cone slump test of cement paste. The selected solutions with proper boundary conditions can be used as reference solutions to evaluate the performance of numerical simulation approaches, such as the discrete element method. METHODS : The slump, height, and spread radius for the given boundary and yield stress conditions that are determined by five different analytical solutions are compared. RESULTS : The analytical solution based on fluid mechanics for pure shear flow shows similar results to that for intermediate flow at low yield stresses. The fluid mechanics-based analytical solution resulted in a very similar trend to the geometry-based analytical solution. However, it showed a higher slump at high yield stress and lower slump at low yield stress ranges than the geometry-based analytical model. The analytical solution based on the mini-cone geometry was not significantly affected by the yield criteria, such as von Mises and Tresca. CONCLUSIONS : Even though differences among the analytical solutions in terms of slump and spread radius existed, the difference can be considered insignificant when the solutions were used as reference to evaluate the appropriateness of numerical approaches, such as the discrete element method.

Properties of Low Heat Portland Cement Concrete by Changing Temperature of Aggregate (골재의 온도 변화에 따른 저발열 포틀랜드 시멘트 콘크리트의 특성)

  • Cho, Yong-Chin;Park, Kwang-Su;Shin, Su-Gyun;Won, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.4
    • /
    • pp.49-55
    • /
    • 2004
  • Properties of concrete using low heat portland cement is different from using ordinary portland cement and temperature of aggregate can be expected to have an important influence on its properties. In this study, experiment by setting up 5 levels (40, 30, 20, 4, $-2^{\circ}C$) by temperature of aggregate for evaluation properties of concrete using low heat portland cement was conducted. The experiments include slump test, air content test, change of slump, change of air content and compressive strength of concrete test. As the result of experiments, slump and air content was decreased by increasing temperature of aggregate. But it was not exceeding it's limit. Change of slump and air content was rapidly decrease by decreasing temperature of aggregate. At early age, compressive strength was influenced by the temperature of aggregate.

A simple test method to evaluate workability of conditioned soil used for EPB Shield TBM (토압식 쉴드 TBM 굴진을 위한 화강풍화토의 컨디셔닝을 평가하는 간편 시험법)

  • Kim, Tae-Hwan;Kwon, Young-Sam;Chung, Heeyoung;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1049-1060
    • /
    • 2018
  • Soil conditioning is one of the key factors for successfull tunnel excavations utilizing the earth pressure-balanced (EPB) shield tunnel boring machine (TBM) by increasing the tunnel face stability and extraction efficiency of excavated soils. In this study, conditioning agents are mixed with the weathered granite soils which are abundant in the Korean peninsula and the workability of the resulting mixture is evaluated through the slump tests to derive and propose the most suitable conditioning agent as well as the most appropriate agent mix ratios. However, since it is cumbersome to perform the slump tests all the time either in the laboratory or in-situ, a simpler test may be needed instead of the slump test; the fall cone test was proposed as a substitute. In this paper, the correlation between the slump value obtained from the slump test and the cone penetration depth obtained from the proposed fall cone test was obtained. Test results showed that a very good correlation between two was observed; it means that the simpler fall cone test can be used to assess the suitability of the conditioned soils instead of the more cumbersome slump test.