• 제목/요약/키워드: Sluice

검색결과 157건 처리시간 0.025초

GPS와 증강현실을 이용한 제수변 관리시스템 구현 (Implementation of Sluice Valve management systems using GPS and AR)

  • 김화선;김창영;이임건
    • 한국정보통신학회논문지
    • /
    • 제21권1호
    • /
    • pp.151-156
    • /
    • 2017
  • 대형 누수와 같은 상수도 사고가 발생했을 경우 신속한 대응조치를 위해서는 현장 관리자가 문제가 발생한 관로의 제수변을 찾아 제어해야 한다. 그러나 현재 상수도 시스템으로는 해당 제수변을 찾는 것이 쉽지 않고, 찾았다하더라도 관련 정보를 바로 알 수 없어 신속하게 대응하지 못하는 문제를 가지고 있다. 이를 해결하기 위해 본 연구에서는 GPS와 증강현실 기술을 사용하여 제수변 위치를 찾는 시스템을 구현하였다. 제안된 시스템은 자이로, 가속도계, 자기 센서를 포함한 안도로이드 장치의 센서를 활용하여 원격 데이터베이스 서버의 위치 데이터와 장치의 현재 GSP 위치가 일치하는 밸브를 찾는다. 또한 증강현실 기술을 사용하여 캡처한 실제 장면에 그래픽 패턴과 추가 정보들을 오버레이하여 나타내었다. 본 연구의 시스템 구현으로 제수변의 체계적인 관리가 가능하므로 사고 발생 시 신속한 대응으로 문제를 해결할 수 있을 것으로 기대된다.

취입모의 경제적 계획취입수심 산정방법에 대한 연구 (A Study on a Calculation Method of Economical Intake Water Depth in the Design of Head Works)

  • 김철기
    • 한국농공학회지
    • /
    • 제20권1호
    • /
    • pp.4592-4598
    • /
    • 1978
  • The purpose of this research is to find out mathemetically an economical intake water depth in the design of head works through the derivation of some formulas. For the performance of the purpose the following formulas were found out for the design intake water depth in each flow type of intake sluice, such as overflow type and orifice type. (1) The conditional equations of !he economical intake water depth in .case that weir body is placed on permeable soil layer ; (a) in the overflow type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }+ { 1} over {2 } { Cp}_{3 }L(0.67 SQRT { q} -0.61) { ( { d}_{0 }+ { h}_{1 }+ { h}_{0 } )}^{- { 1} over {2 } }- { { { 3Q}_{1 } { p}_{5 } { h}_{1 } }^{- { 5} over {2 } } } over { { 2m}_{1 }(1-s) SQRT { 2gs} }+[ LEFT { b+ { 4C TIMES { 0.61}^{2 } } over {3(r-1) }+z( { d}_{0 }+ { h}_{0 } ) RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L+ { dcp}_{3 }L+ { nkp}_{5 }+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ] =0}}}} (b) in the orifice type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }+ { 1} over {2 } C { p}_{3 }L(0.67 SQRT { q} -0.61)}}}} {{{{ { ({d }_{0 }+ { h}_{1 }+ { h}_{0 } )}^{ - { 1} over {2 } }- { { 3Q}_{1 } { p}_{ 6} { { h}_{1 } }^{- { 5} over {2 } } } over { { 2m}_{ 2}m' SQRT { 2gs} }+[ LEFT { b+ { 4C TIMES { 0.61}^{2 } } over {3(r-1) }+z( { d}_{0 }+ { h}_{0 } ) RIGHT } { p}_{1 }L }}}} {{{{+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 } L+dC { p}_{4 }L+(2 { z}_{0 }+m )(1-s) { L}_{d } { p}_{7 }]=0 }}}} where, z=outer slope of weir body (value of cotangent), h1=intake water depth (m), L=total length of weir (m), C=Bligh's creep ratio, q=flood discharge overflowing weir crest per unit length of weir (m3/sec/m), d0=average height to intake sill elevation in weir (m), h0=freeboard of weir (m), Q1=design irrigation requirements (m3/sec), m1=coefficient of head loss (0.9∼0.95) s=(h1-h2)/h1, h2=flow water depth outside intake sluice gate (m), b=width of weir crest (m), r=specific weight of weir materials, d=depth of cutting along seepage length under the weir (m), n=number of side contraction, k=coefficient of side contraction loss (0.02∼0.04), m2=coefficient of discharge (0.7∼0.9) m'=h0/h1, h0=open height of gate (m), p1 and p4=unit price of weir body and of excavation of weir site, respectively (won/㎥), p2 and p3=unit price of construction form and of revetment for protection of downstream riverbed, respectively (won/㎡), p5 and p6=average cost per unit width of intake sluice including cost of intake canal having the same one as width of the sluice in case of overflow type and orifice type respectively (won/m), zo : inner slope of section area in intake canal from its beginning point to its changing point to ordinary flow section, m: coefficient concerning the mean width of intak canal site,a : freeboard of intake canal. (2) The conditional equations of the economical intake water depth in case that weir body is built on the foundation of rock bed ; (a) in the overflow type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }- { { { 3Q}_{1 } { p}_{5 } { h}_{1 } }^{- {5 } over {2 } } } over { { 2m}_{1 }(1-s) SQRT { 2gs} }+[ LEFT { b+z( { d}_{0 }+ { h}_{0 } )RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L+ { nkp}_{5 }}}}} {{{{+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ]=0 }}}} (b) in the orifice type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }- { { { 3Q}_{1 } { p}_{6 } { h}_{1 } }^{- {5 } over {2 } } } over { { 2m}_{2 }m' SQRT { 2gs} }+[ LEFT { b+z( { d}_{0 }+ { h}_{0 } )RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L}}}} {{{{+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ]=0}}}} The construction cost of weir cut-off and revetment on outside slope of leeve, and the damages suffered from inundation in upstream area were not included in the process of deriving the above conditional equations, but it is true that magnitude of intake water depth influences somewhat on the cost and damages. Therefore, in applying the above equations the fact that should not be over looked is that the design value of intake water depth to be adopted should not be more largely determined than the value of h1 satisfying the above formulas.

  • PDF

새만금 갑문 개폐 자동 영상 관측 시스템 개발 (Development of Camera Monitoring System for Detecting the Opening Status of Saemangeum Sluice Gate)

  • 김태림;박종집;장성우
    • 한국지리정보학회지
    • /
    • 제14권1호
    • /
    • pp.73-83
    • /
    • 2011
  • 새만금 방조제 갑문의 개폐 상황은 새만금 인근 해역의 수질에 영향을 미치는 중요한 요소이다. 갑문의 개폐 정보는 새만금 방조제 인근 해역의 해상 탑에서 이루어지는 수질 및 유속 자료의 분석에 중요할 뿐만 아니라 해양 환경에 대한 수치 모의시 중요한 경계 조건이다. 본 연구에서는 기설치된 해상 관측 탑에 미니 노트북과 디지털카메라를 이용하여 자동무인영상 관측 시스템을 구축하고 촬영된 영상으로부터 갑문의 개폐상황을 자동으로 추출하였다. 특히 영상의 분산도 차이를 이용한 방법과 경계선 검출 기술을 동시에 활용한 결과 정확하게 갑문의 개폐 여부를 자동으로 확인할 수 있었다.

수직수문하의 경계층흐름 (Boundary Layer Flow Under a Sluice Gate)

  • 이정열
    • 물과 미래
    • /
    • 제27권3호
    • /
    • pp.95-105
    • /
    • 1994
  • 수직수문하의 경계층 흐름(boundary layer flow)이 경계고정좌표계(Boundary- Fitted Coordinate System)에서 무작위 소용돌이 판 방법(Random Vortex Sheet Method)과 요소내 소용돌이 방법(Vortex-in-Cell Method)을 이용하여 수치계산되었다. 수치해에 의한 수문을 따라 형성된 경계층이 수축률의 실험자료와 비점성이론에 의한 그 결과의 차이를 유발하는 주원인인 것으로 보여진다. 그 동안 주원인일 것으로 믿어왔던 바닥면 경게층의 역할은 수문면의 그 것보다는 적은 것으로 수치계산되었다. 또한 차원해석을 통하여 경계층 흐름에 의한 수축율의 그 차이가 수문 길이의 평방근에 반비례하는 것으로 추정되었으며, 이는 Benjamin(1956)에 의하여 분석된 것과 결국 동일한 것임이 밝혀졌다. 수치모델과 차원해석에 따른 결과는 Benjamin(1956)에 의해 얻어진 수축률의 실허미와 비교하여 만족할 만하였다.

  • PDF

낙동강하류에서 고니류(Cygnus spp.)의 지역별 분포 특성 (Regional Distribution Characteristics of Swans(Cygnus spp.) in the Nakdong River Downstream from October 2008 to September 2013, Busan, R. O. Korea )

  • 홍순복;홍지표
    • 한국환경과학회지
    • /
    • 제32권7호
    • /
    • pp.493-502
    • /
    • 2023
  • This study was conducted to understand the regional distribution characteristics of swans(Cygnus spp.) in downstream of t he Nakdong River , R.O.Korea from October 2008 to September 2013. During this period, a total of two species and 37,518 ind ividuals of Swans(Cygnus spp.) were observed, including 31,596 Whooper Swans(Cygnus cygnus) and 5,922 Tundra Swans (Cygnus columbianus), respectively. The average number of individuals observed in fifteen different areas was 2255.33 in D aemadeung(A), 143.50 in Jangja·Sinjado(B), 304.00 in Sajado·Doyodeung(C), 1928.00 in Lower Ulsukdo(D), 1392.67 in Ulsu kdo(E), 50.17 in Ilwoongdo(F), 91.17 in Yeommak(G), 5.17 in Maekdogang(H), 0.00 in Pyeonggangcheon(I), 0.00 in Lower Noksan sluice(J), 2.83 in Upper Noksan sluice(K), 6.17 in Jomangang·Doonchido(L), 4.50 in Chideung(M), 0.83 in Joongsado (N)and 66.17 in Daejeo sluice(O). The total average of these fifteen areas was 480.81. There was a significant difference am ong the survey areas (Kruskal-Wallis test, 𝒳2=4055.68, P<0.001). In particular, the observed numbers were larger in Dae madeung, Lower Ulsukdo and Ulsukdo than in the other regions.

조력발전용 수문 성능평가를 위한 평면 수리모형실험 (Plane Experiments for Estimating Performance of the Sluice of Tidal Power Plant)

  • 오상호;이광수;장세철;이달수
    • 한국해안·해양공학회논문집
    • /
    • 제23권6호
    • /
    • pp.474-481
    • /
    • 2011
  • 조력발전용 수문의 성능을 평가하기 위한 평면 수리모형실험을 수행하여 수문의 유량계수 및 수문별 공간적 유속 분포 특성을 규명하였다. 수리모형실험은 평면 개수로에 현장 규모 수문의 1/70 축척 모형 10개를 제작 및 설치하고, 수문 구조물 전 후면에는 Apron 구간을 설치하여 수행되었다. 특히, 유량계수 평가에 영향을 미칠 수 있는 수문 구조물 전 후면에서의 수위 계측위치 및 계측방법을 합리적으로 결정하려고 시도하였다. 실험 유량 및 조위 조건을 변화시키면서 실험을 수행한 결과 본 실험에서의 수문 유량계수는 1.3~1.4로 평가되었다. 한편, 수문 10개 각각의 평균유속을 비교한 결과, 평균유속이 10개 평균값에 비해서 중앙부 수문에서는 2~3% 빠르고, 측면부 수문에서는 4~5% 느린 결과를 얻었다.

단위유량도와 비수갑문 단면 및 방조제 축조곡선 결정을 위한 조속계산 (Calculation of Unit Hydrograph from Discharge Curve, Determination of Sluice Dimension and Tidal Computation for Determination of the Closure curve)

  • 최귀열
    • 한국농공학회지
    • /
    • 제7권1호
    • /
    • pp.861-876
    • /
    • 1965
  • During my stay in the Netherlands, I have studied the following, primarily in relation to the Mokpo Yong-san project which had been studied by the NEDECO for a feasibility report. 1. Unit hydrograph at Naju There are many ways to make unit hydrograph, but I want explain here to make unit hydrograph from the- actual run of curve at Naju. A discharge curve made from one rain storm depends on rainfall intensity per houre After finriing hydrograph every two hours, we will get two-hour unit hydrograph to devide each ordinate of the two-hour hydrograph by the rainfall intensity. I have used one storm from June 24 to June 26, 1963, recording a rainfall intensity of average 9. 4 mm per hour for 12 hours. If several rain gage stations had already been established in the catchment area. above Naju prior to this storm, I could have gathered accurate data on rainfall intensity throughout the catchment area. As it was, I used I the automatic rain gage record of the Mokpo I moteorological station to determine the rainfall lntensity. In order. to develop the unit ~Ydrograph at Naju, I subtracted the basic flow from the total runoff flow. I also tried to keed the difference between the calculated discharge amount and the measured discharge less than 1O~ The discharge period. of an unit graph depends on the length of the catchment area. 2. Determination of sluice dimension Acoording to principles of design presently used in our country, a one-day storm with a frequency of 20 years must be discharged in 8 hours. These design criteria are not adequate, and several dams have washed out in the past years. The design of the spillway and sluice dimensions must be based on the maximun peak discharge flowing into the reservoir to avoid crop and structure damages. The total flow into the reservoir is the summation of flow described by the Mokpo hydrograph, the basic flow from all the catchment areas and the rainfall on the reservoir area. To calculate the amount of water discharged through the sluiceCper half hour), the average head during that interval must be known. This can be calculated from the known water level outside the sluiceCdetermined by the tide) and from an estimated water level inside the reservoir at the end of each time interval. The total amount of water discharged through the sluice can be calculated from this average head, the time interval and the cross-sectional area of' the sluice. From the inflow into the .reservoir and the outflow through the sluice gates I calculated the change in the volume of water stored in the reservoir at half-hour intervals. From the stored volume of water and the known storage capacity of the reservoir, I was able to calculate the water level in the reservoir. The Calculated water level in the reservoir must be the same as the estimated water level. Mean stand tide will be adequate to use for determining the sluice dimension because spring tide is worse case and neap tide is best condition for the I result of the calculatio 3. Tidal computation for determination of the closure curve. During the construction of a dam, whether by building up of a succession of horizontael layers or by building in from both sides, the velocity of the water flowinii through the closing gapwill increase, because of the gradual decrease in the cross sectional area of the gap. 1 calculated the . velocities in the closing gap during flood and ebb for the first mentioned method of construction until the cross-sectional area has been reduced to about 25% of the original area, the change in tidal movement within the reservoir being negligible. Up to that point, the increase of the velocity is more or less hyperbolic. During the closing of the last 25 % of the gap, less water can flow out of the reservoir. This causes a rise of the mean water level of the reservoir. The difference in hydraulic head is then no longer negligible and must be taken into account. When, during the course of construction. the submerged weir become a free weir the critical flow occurs. The critical flow is that point, during either ebb or flood, at which the velocity reaches a maximum. When the dam is raised further. the velocity decreases because of the decrease\ulcorner in the height of the water above the weir. The calculation of the currents and velocities for a stage in the closure of the final gap is done in the following manner; Using an average tide with a neglible daily quantity, I estimated the water level on the pustream side of. the dam (inner water level). I determined the current through the gap for each hour by multiplying the storage area by the increment of the rise in water level. The velocity at a given moment can be determined from the calcalated current in m3/sec, and the cross-sectional area at that moment. At the same time from the difference between inner water level and tidal level (outer water level) the velocity can be calculated with the formula $h= \frac{V^2}{2g}$ and must be equal to the velocity detertnined from the current. If there is a difference in velocity, a new estimate of the inner water level must be made and entire procedure should be repeated. When the higher water level is equal to or more than 2/3 times the difference between the lower water level and the crest of the dam, we speak of a "free weir." The flow over the weir is then dependent upon the higher water level and not on the difference between high and low water levels. When the weir is "submerged", that is, the higher water level is less than 2/3 times the difference between the lower water and the crest of the dam, the difference between the high and low levels being decisive. The free weir normally occurs first during ebb, and is due to. the fact that mean level in the estuary is higher than the mean level of . the tide in building dams with barges the maximum velocity in the closing gap may not be more than 3m/sec. As the maximum velocities are higher than this limit we must use other construction methods in closing the gap. This can be done by dump-cars from each side or by using a cable way.e or by using a cable way.

  • PDF