• Title/Summary/Keyword: Sludge pre-treatment

Search Result 101, Processing Time 0.024 seconds

A Pilot Study on Air Flotation Processes for Retrofitting of Conventional Wastewater Treatment Facilities (하수처리시설의 Retrofitting을 위한 파일럿 규모 공기부상공정 연구)

  • Park, Chanhyuk;Hong, Seok-Won;Lee, Sanghyup;Choi, Yong-Su
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.329-336
    • /
    • 2008
  • The pilot study was conducted to evaluate the applicability of air flotation(AF) processes combined with biological nutrient removal(BNR) for the retrofitting of conventional wastewater treatment facilities. The BNR system was operated in pre-denitrification and intermittent aeration; developed ceramic membrane diffusers were installed to separate the solid-liquid of activated sludge at the bottom of a flotation tank. Before performing a pilot scale study, the size distribution of microbubbles generated by silica or alumina-based ceramic membrane diffusers was tested to identify the ability of solid-liquid separation. According to the experimental results, the separation and thickening efficiency of the alumina-based ceramic membrane diffuser was higher than the silica-based ceramic membrane diffuser. In a $100m^3/d$ pilot plant, thickened and return sludge concentration was measured to be higher than 15,000mg SS/L, therefore, the MLSS in the bioreactor was maintained at over 3,000mg SS/L. The effluent quality of the AF-BNR process was 4.2mg/L, 3.7mg/L, 10.6mg/L and 1.6mg/L for $BOD_5$, SS, T-N and T-P, respectively. Lastly, it was revealed that the unit treatment cost by flotation process is lower than about $1won/m^3$ compared to a gravity sedimentation process.

A Study on the pretreatment of Activated Sludge for Bio-hydrogen Production process (생물학적 수소생산 공정 개발을 위한 오니 슬러지 전처리에 대한 연구)

  • Kim Dong Kkun;Kim Ji Seong;Kim Ho Il;Lee Yu Na;Pak Dae Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2004.07a
    • /
    • pp.21-33
    • /
    • 2004
  • In this study, Anaerobic sewage sludge in a batch reactor operating at $35^{\circ}C$ was used as the seed to investigate the effect of pretreatments of waste activated sludge and to evaluate its hydrogen production potential by anaerobic fermentation. Various pretreatments including physical, chemical and biological means were conducted to utilize for substrate. As a result, SCODcr of alkali and mechanical treatment was 15 and 12 times enhanced, compared with a supernatant of activated sludge. And SCODcr was 2 time increase after re-treatment with biological hydrolysis. Those were shown that sequential hybridized treatment of sludge by chemical & biological methods is most efficient process for sludge treatment. The pre-treatment activated sludge was tested to conform hydrogen production potential in batch experiments. When buffer solution was added to the activated sludge, hydrogen production potential increased as compare with no addition.

  • PDF

Assessment of Methane Potential in Hydro-thermal Carbonization reaction of Organic Sludge Using Parallel First Order Kinetics (병열 1차 반응속도식을 이용한 유기성 슬러지 수열탄화 반응온도별 메탄생산퍼텐셜 평가)

  • Oh, Seung-Yong;Yoon, Young-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.2
    • /
    • pp.128-136
    • /
    • 2016
  • BACKGROUND: Hydrothermal carbonization reaction is the thermo-chemical energy conversion technology for producing the solid fuel of high carbon density from organic wastes. The hydrothermal carbonization reaction is accompanied by the thermal hydrolysis reaction which converse particulate organic matters to soluble forms (hydro-thermal hydrolysate). Recently, hydrothermal carbonization is adopted as a pre-treatment technology to improve anaerobic digestion efficiency. This research was carried out to assess the effects of hydro-thermal reaction temperature on the methane potential and anaerobic biodegradability in the thermal hydrolysate of organic sludge generating from the wastewater treatment plant of poultry slaughterhouse .METHODS AND RESULTS: Wastewater treatment sludge cake of poultry slaughterhouse was treated in the different hydro-thermal reaction temperature of 170, 180, 190, 200, and 220℃. Theoretical and experimental methane potential for each hydro-thermal hydrolysate were measured. Then, the organic substance fractions of hydro-thermal hydrolysate were characterized by the optimization of the parallel first order kinetics model. The increase of hydro-thermal reaction temperature from 170℃ to 220℃ caused the enhancement of hydrolysis efficiency. And the methane potential showed the maximum value of 0.381 Nm3 kg-1-VSadded in the hydro-thermal reaction temperature of 190℃. Biodegradable volatile solid(VSB) content have accounted for 66.41% in 170℃, 72.70% in 180℃, 79.78% in 190℃, 67.05% in 200℃, and 70.31% in 220℃, respectively. The persistent VS content increased with hydro-thermal reaction temperature, which occupied 0.18% for 170℃, 2.96% for 180℃, 6.32% for 190℃, 17.52% for 200℃, and 20.55% for 220℃.CONCLUSION: Biodegradable volatile solid showed the highest amount in the hydro-thermal reaction temperature of 190℃, and then, the optimum hydro-thermal reaction temperature for organic sludge was assessed as 190℃ in the aspect of the methane production. The rise of hydro-thermal reaction temperature caused increase of persistent organic matter content.

Recovery of high quality external carbon sources using crystallization from pretreated excess activated sludge by alkali and ozone (알칼리-오존 동시 전처리된 잉여슬러지로부터 결정화를 이용한 고품질 외부탄 소원 회수)

  • Seo, In S.;Kim, Hong S.;Kim, Byung G.;Kim, Youn K.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.641-646
    • /
    • 2008
  • In this research, recovery of high quality organics from excess activated sludge and its potential as a external carbon sources for BNR process was studied. By simultaneous treatment of alkali and ozone, TSS concentration was reduced by 32%, and RBDCOD fraction was increased by 76.2%, and major constitute of produced organic were acetic acid and propionic acid. Also, nitrogen and phosphorus were greatly solubilized. However, because acid-hydrolyzable phosphorus(AHP) was major part of solubilized phosphorus, $NH_4{^+}-N$ and $PO_4{^3}-P$ concentration were insufficient for effective formation of crystal like as MAP(Magnesium Ammonium Phosphate) and hydroxyapatite. By placing BPR reactor before alkali-ozone treatment reactor, $PO_4{^3}-P$ concentration in pretreated sludge was increased by 1.8 times, and improved potential of phosphorus recovery by crystallization. In experiment of crystallization, hydroxyapatite formation was more easily applied than MAP. By hydroxyapatite formation, $SCOD/PO_4-P$ ratio was greatly increased from 32.7 at control to 141.9 at $Ca^{2+}/PO{_4}^{3-}-P$ mole ratio of 2.4. The results based on this study indicated that the proposed system configuration has potential to reduce the excess sludge production, to recover phosphorus in usable forms as well as utilize organics as a external carbon source in BNR process.

Enhancement of anaerobic digestion of sewage sludge by combined process with thermal hydrolysis and separation (하수슬러지 혐기성 소화 효율 향상을 위한 열가수분해-고액분리 결합 공정)

  • Lee, See-Young;Han, Ihn-Sup
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.99-106
    • /
    • 2021
  • The purpose of this study was to evaluate the performance of novel process with thermal hydrolysis and separation as pre-treatment of anaerobic digestion (AD). The dewatered sludge was pre-treated using THP, and then separated. The separated liquid used as substrate for AD and separated solid was returned on THP(Thermal Hydrolysis Process). The degree of disintegration (DD, based on COD) using only THP found 45.1-49.3%. The DD using THP+separation found 76.1-77.6%, which was higher than only THP. As result from dual-pool two-step model, the ratio of rapidly degradable substrate to total degradable substrate found 0.891-0.911 in separated liquid, which was higher than only THP. However, the rapidly degradable substrate reaction constant (kF) of only THP and THP+separation were similar. This results found that dewatered sludge was disintegrated by THP, and then rapidly degradable substrate of hydrolyzed sludge was sorted by separation.

A Study on the Odor and Ventilation in Sludge Incineration Facilities (슬러지 소각시설 악취 및 환기에 관한 연구)

  • Seo, Byung-Suk;Jeon, Yong-Han
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.2
    • /
    • pp.7-13
    • /
    • 2020
  • Sludge incineration facilities are socially recognized as a hate facility. Therefore, a careful deodorization plan must be established. Therefore, the incineration facility must conduct research on odor ventilation. In this study, a odor diffusion simulation in an incineration facility was conducted and analyzed. In particular, research was carried out on carry-in rooms, pre-treatment rooms, and storage facilities for crops, which are expected to rapidly spread odor. As a result, ammonia 1.62, hydrogen sulfide 0.63, and acetaldehyde 0.73 were found in the transfer room. In addition, pretreatment rooms and stencil storage facilities were found to be lower than regulatory standards.

A Study of Biological Hydrolysis Efficiency for Methane Digestion with Municipal Solid Waste (메탄발효를 위한 도시쓰레기 초고온 가용화 방법의 효율성 검토)

  • Cheon, Ji-Hoon;Hiroshi, Tsuno
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.5
    • /
    • pp.561-572
    • /
    • 2010
  • The efficiency of biological hydrolysis at $80^{\circ}C$ on municipal solid waste mixed with anaerobic digestion sludge was investigated in 100L batch reactors. The hydrolysis effect was observed within a day, when the hydrolysis reactor used for a pre-treatment reactor for methanogenesis, and the effect was observed during two days, When the reactor used for post-treatment reactor. For both configurations, methane production rate decreased, when hydrolysis was carried out more than a day. Gaseous ammonia in the hydrolysis reactors was successtully removed by the ammonia stripping system. Microbial diversity analysis on the hydrolysis reactors indicated dependency of microbial diversity on the configuration of the hydrolysis reactors. Carbohydrate and lactate degrading microbes dominated in the hydrolysis reactor, when the hydrolysis reactor used for a pre-treatment reactor for methanogenesis, while protein degrading microbes dominated in the post-treatment reactor.

The study on increasing of biodegradability by pre-treatment of municipal wasted sludge in anaerobic digestion process (도시하수슬러지의 전처리에 따른 혐기성 소화공정의 생분해율 향상에 관한 연구)

  • Kang, Chang-Min
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.1
    • /
    • pp.87-95
    • /
    • 2002
  • The slow degradation rate of sludge in anaerobic digestion is due to rate-limiting step of sludge hydrolysis. To upgrading of sludge hydrolysis and biodegradabiliry, the pre-treatment had been carried out using acidlc (pH 1.5, 3, 4, 5) and alkaline (pH 9, 10, 13), thermal (50, 100, 150, $200^{\circ}C$), and ultrasonic treatment (400W, 20kHz, 15, 20, 25, 30, 40, 50, 60, 90min). In the best conditions of each treatment, the Soluble SCOD Ratio(%)of treated/untreated sample were increased 102% in acid (pH5), 986% in alkali (pH 13), 595% in thermal ($200^{\circ}C$) and 1123% in ultrasonic (35min) treatment. As the result, the ultrasonic treatment was most effective, followed by alkali, thermal, acid treatment. In the effects of total gas productivity in vial test, the thermal ($200^{\circ}C$) pre-treatment was the highest, followed by thermal ($150^{\circ}C$), ultrasonic (90min), alkaline (pH 9), and ultrasonic (50min). We compared untreated samples and the most efficient pre-treatment samples(at $200^{\circ}C$, for 30min) on gas productivity with changes of HRT in continuous experiments IN thermal treated samples were 2.5 times in SCOD, 2 times in soluble protein and 3.3 times high in soluble carbohydrate than untreated ones. In gas productivity, the thermal treated samples were average 2 times high than untreated ones. And HRT 7 days was most effective. followed by HRT 10, HRT 15 days. But The gas productiviry of HRT 2.5 days was less than untreated, the reason of low gas productivity was come from high organic acids accumulation within reactor.

  • PDF

Evaluation of Anaerobic Fermentation and Nitrate Removal Efficiency of Sewage Sludge Pre-treated with Electrolysis (전기분해 전처리 슬러지의 혐기성 소화 및 질산염 제거효율 평가)

  • Kim, Jaehyung;Jeon, Hyeyeon;Pak, Daewonk
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.33-39
    • /
    • 2014
  • This study was performed with electrolysis treatment method for improving anaerobic digestion gas production efficiency in a sewage sludge, thereby confirmed in anaerobic digestion production and denitrification effect. As a result, solubilization was increased by increasing treatment time of electrolysis and current density, also showed to be 9.02% with 10 mA/cm2 of current density in 4 mm electrode distance. Based on the results of BMP test used the above experiment, methane production was 0.49 L CH4/g VS, and increased by 88.4% compared with control groups. As for the results of denitrification using the sewage sludge treated with the same conditions, denitrification rate appeared $19.2mg\;NO_3{^{-}}N/g\;MLVSS{\cdot}hr$, and through the sewage sludge treated with electrolysis, it can be applied to anaerobic digestion and denitrification process by increasing biodegradation.

A study on Establishment of Vermicomposting Index Using Leakage Water (침출액을 이용한 지렁이 퇴비화지표 설정에 관한 연구)

  • Lee, Chang-Ho;Kim, Jong-Oh;Choi, Suk Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.1
    • /
    • pp.178-184
    • /
    • 2007
  • In the present work, the vermicomposting index was investigated using leakage water from sludge to develop the process of mechanization and automation in the earthworm-cast treatment. The in situ sewage sludge was used batch and continuous experiments. Due to different treatment processes, the physico-chemical characteristics of liquid extracted from sludge was the similar change pattern. However, some items, such as Oxidation Reduction Potential (ORP), pH, Electrical Conductivity (EC) and $NH_3-N$, showed the distinct changes between pre- and post-vermicomposting. Also, The ORP and EC were the best parameters for the vermicomposting index. These results offered that the present vermicomposting technology was an actual earthworm-cast treatment.

  • PDF