• 제목/요약/키워드: Slow steaming

검색결과 13건 처리시간 0.036초

The Effects of Slow Steaming on the Liners' Operating Strategy

  • Woo, Jong-Kyun
    • 한국항해항만학회지
    • /
    • 제38권6호
    • /
    • pp.567-575
    • /
    • 2014
  • In recent times, an obvious strategy in liner shipping markets that has come to the fore is slow steaming. Nowadays, most liner shipping companies have decelerated the voyage speed to 15-18 knots on major routes, and some leading liner shipping companies have a plan to reduce it to below 15 knots. Slow steaming is helpful in reducing the operating cost and the amount of greenhouse-gas emissions on a single vessel with lower fuel consumption. However, it also creates various negative effects such as the opportunity cost, additional fixed costs and an in-transit inventory cost on a loop. Hence, the net operating cost on a loop is changing dynamically due to the changes of voyage speed based on various slow steaming effects. The aim of this study is to analyze the slow steaming effects in the liner shipping, and to find the best voyage speed that minimizes the operating cost on a loop. Moreover, this study suggests the recommendable strategy for liner shipping companies. To achieve the aim of this study, a simulation model has been designed using System Dynamics.

A Study on the Impact of Slow Steaming on Containership Operations under the Carbon Intensity Indicator Regulation

  • Daesik Seo;Youngran Shin
    • 한국항해항만학회지
    • /
    • 제48권2호
    • /
    • pp.97-103
    • /
    • 2024
  • As there is growing concern about the environmental impact of greenhouse gas emissions from ships, the International Maritime Organization (IMO) has introduced several regulations targeting reductions in carbon dioxide emissions of 50% by 2050. This study pays particular attention to the carbon intensity indicator (CII) and investigates the impact of slow steaming, one of the short-term measures in the regulation, on containership operations. To this end, a dataset of 8 containerships with various ages and sizes was collected. Based on operation data in 2021, the CII ratings of the containerships were estimated in the business-as-usual scenario for the 2023-2030 period. Then, the speed reductions required to keep the minimum CII rating were calculated for individual containerships. Finally, working day losses resulting from the speed reductions were calculated. The findings in this study were threefold. First, it was found that containerships will undergo degradation in the CII rating every 3 or 4 years without slow steaming. Second, a speed reduction of 2 knots between 2023 and 2030 is required to keep the minimum CII rating. Finally, speed reductions result in the loss of as many as 6 or 7 working days per year.

트림 변화에 따른 컨테이너선의 저항성분별 특성 연구 (Study on Resistance Component of Container Ship According to Trim Conditions)

  • 한기민;박현석;서대원
    • 한국해양공학회지
    • /
    • 제29권6호
    • /
    • pp.411-417
    • /
    • 2015
  • The shipping and shipbuilding industries have had business difficulties since the implementation of regulations on the CO2 emissions from ships by IMO and the occurrence of the global financial crisis in 2008. Under this global recession, most shipping firms have started to operate their fleets at slow steaming rates with the goal of improving the profit ratio per transported unit. This study analyzed the resistance performance of a 6,800 TEU container ship corresponding to its trim variation with slow steaming, compared with that at its original design speed. Two different grid systems were used for the numerical calculation, one that considered the free surface allowing the capture of the dynamic trim and one that did not. This made it possible to clearly classify each resistance component to provide useful information to hull-form designers. In addition, a form factor assumption method using CFD was used for a reasonable effective power prediction in compliance with the 1978 ITTC performance prediction method. It was found that the total resistance of a 6,800 TEU container ship was reduced by 2.6% in the case of a 1-m trim at the bow at 18 kn.

저속시 선체에 작용하는 조종유체력 및 조종성능에 관한 연구 (Hydrodynamic Forces and Manoeuvring Characteristics of Ships at Low Advance Speed)

  • 손경호
    • 한국항해학회지
    • /
    • 제15권4호
    • /
    • pp.27-39
    • /
    • 1991
  • 출발, 정지, 후진, 가속, 감속 등을 포함하는 저속 항행시의 조종운동을 예측하기 위해서, 선체, 프로펠러, 타에 작용하는 유체력의 특징을 검토하여 이를 수식모델화 하였으며, 제안된 수식모델을 이용하여 유조선, 가스운반선 두 선박에 대해 저속시의 조종운동 시뮬레이션 계산을 수행하여 실험결과와 비교 검토하였다

  • PDF

저속시 선체에 작용하는 조종유체력 및 조종성능에 관한 연구 (Hydrodynamic Forces and Maneuvering Characteristics of Ships at Low Advance Speed)

  • 손경호
    • 대한조선학회논문집
    • /
    • 제29권3호
    • /
    • pp.90-101
    • /
    • 1992
  • 선박이 일정속도 이상의 전진속도를 갖일 때의 조종성능 평가법은 지금까지 많이 제안되어 왔으나, 이들을 항만내에서의 다양한 운동모드 즉, 출발, 정지, 후진, 미속조종 등에는 적용에 무리가 있다. 본 연구에서는 출발, 정지, 후진, 미속조종 등을 포함하는 저속항행시의 조종운동 특성의 평가법을 제안하기 위해서, 대각도 횡류각 뿐만 아니라 광범위한 프로펠러 작동하에서의 선체, 프로펠러, 타에 작용하는 유체력의 특성을 수식모형화 하였다. 제안된 수식모형을 이용하여 액화가스 운반선, 대형유조선 두 선박에 대해 저속항행시의 조종운동 시뮬레이션 계산을 수행하여 실선시험 또는 모형시험 결과와 비교, 검토하였다.

  • PDF

HPLC를 이용한 인삼, 홍삼, 산양산삼 및 홍산삼의 성분 비교 분석 (Component Analysis of Cultivated Ginseng, Red Ginseng, Cultivated Wild Ginseng, and Red Wild Ginseng Using HPLC Method)

  • 이장호;권기록;차배천
    • 대한약침학회지
    • /
    • 제11권2호
    • /
    • pp.87-95
    • /
    • 2008
  • Objectives The aim of this experiment is to provide an differentiation of ginseng, red ginseng, cultivated wild ginseng(CWG), and red wild ginseng(RWG) through component analysis using HPLC(High Performance Liquid Chromatography, hereafter HPLC). Methods Comparative analyses of ginsenoside $Rg_3$, ginsenoside $Rh_2$, and ginsenosides $Rb_1$ and $Rg_1$ of various ginsengs were conducted using HPLC. Results 1. CWG was relatively heat-resistant and showed slow change in color during the process of steaming and drying, compared to cultivated ginseng. 2. Ginsenoside $Rg_3$ was not detected in cultivated ginseng and CWG, whereas it was high in red ginseng and RWG. Ginsenoside $Rg_3$ was more generated in red ginseng than in RWG. 3. Ginsenoside $Rh_2$ appreared during steaming and drying of cultivated ginseng, whereas it was more increased during steaming and drying of CWG. 4. Ginsenoside $Rg_1$ content was more increased during steaming and drying of cultivated ginseng, whereas it was more decreased during steaming and drying of CWG. 5. Ginsenoside $Rb_1$ content was increased about 500% during steaming and drying of cultivated ginseng, whereas it was increased about 30% during steaming and drying of CWG, indicating that ginsenoside $Rb_1$ was more generated in red ginseng than in RWG. 6. Ginsenoside $Rg_3$ content was higher, whereas ginsenoside $Rg_1$ content was lower in 11th RWG than in 9th RWG, indicating that ginsenoside $Rg_3$ content was increased and $Rg_1$ content was decreased as steaming and drying continued to proceed. Ginsenoside $Rh_2$ and $Rb_1$ contents began to be increased, followed by decreased after 9th steaming and drying process. Conclusions Above experiment data can be an important indicator for the dentification of ginseng, red ginseng, CWG, and RWG. And the following studies will be need for making good product using CWG.

선박속력 및 급유결정 문제에 대한 휴리스틱 알고리즘 (A Heuristic Algorithm for a Ship Speed and Bunkering Decision Problem)

  • 김화중;김재곤
    • 산업경영시스템학회지
    • /
    • 제39권2호
    • /
    • pp.19-27
    • /
    • 2016
  • Maritime transport is now regarded as one of the main contributors to global climate change by virtue of its $CO_2$ emissions. Meanwhile, slow steaming, i.e., slower ship speed, has become a common practice in the maritime industry so as to lower $CO_2$ emissions and reduce bunker fuel consumption. The practice raised various operational decision issues in terms of shipping companies: how much ship speed is, how much to bunker the fuel, and at which port to bunker. In this context, this study addresses an operation problem in a shipping companies, which is the problem of determining the ship speed, bunkering ports, and bunkering amount at the ports over a given ship route to minimize the bunker fuel and ship time costs as well as the carbon tax which is a regulatory measure aiming at reducing $CO_2$ emissions. The ship time cost is included in the problem because slow steaming increases transit times, which implies increased in-transit inventory costs in terms of shippers. We formulate the problem as a nonlinear lot-sizing model and suggest a Lagrangian heuristic to solve the problem. The performance of the heuristic algorithm is evaluated using the data obtained from reliable sources. Although the problem is an operational problem, the heuristic algorithm is used to address various strategic issues facing shipping companies, including the effects of bunker prices, carbon taxes, and ship time costs on the ship speed, bunkering amount and number of bunkering ports. For this, we conduct sensitivity analyses of these factors and finally discuss study findings.

2행정 대형 디젤엔진의 성능향상을 위한 연료첨가제의 실험적 연구 (An Experimental Study of the Fuel Additive to Improve the Performance of a 2-Stroke Large Diesel Engine)

  • 류영현;이영서;남정길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권6호
    • /
    • pp.620-625
    • /
    • 2015
  • IMO MEPC에서는 지구온난화를 늦추기 위해서, 선박에서 배출되는 GHG(Green House Gas)인 $CO_2$를 줄이기 위한 방안으로 선속을 다운시켜 운항할 것을 제안한바 있으며, 해운회사에서도 연료비 절감을 위해서 자발적으로 감속운항(Low steaming)을 하고 있어, 국제항해에 종사하고 있는 대부분의 컨테이너선들이 감속운항을 하고 있다. 또한, 날로 증가되고 있는 해운 물동량 증가로 선박의 연료비 부담이 증가되고 있어 연료비 절감 기술개발이 절실히 요구되고 있다. 따라서 본 연구에서는 디젤엔진의 성능을 향상시킬 수 있는 연료첨가제(유용성 칼슘계 유기금속화합물)를 일정량 투입(사용 연료량의 0.025%) 하여 연료비를 절감하는 방법을 시도하였다. 실험의 정확도를 위해서 육상 발전소에 설치된 2행정 대형 디젤엔진을 실험 대상으로 하였다. 실험 엔진의 부하는 저, 중 및 고 부하(50, 75, 100%)로 나누어서 실시하였으며, 연료첨가제의 투입 전과 투입 후의 엔진성능(출력, 연료소비율, 최고연소압력(P-max), 배기온도)을 비교 분석 하였다. 본 실험을 통해서 연료첨가제를 투입함으로써 저부하(50%) 에서 2% 이상의 연료비 절감 효과를 확인 할 수 있었으며, 최고연소압력은 상승하는 반면에 배기온도는 하강함을 알 수 있었다.

CFD를 이용한 컨테이너 선형의 트림별 저항성능 해석 (Analysis of Resistance Performance for Various Trim Conditions on Container ship Using CFD)

  • 서대원;박현석;한기민
    • 한국해양공학회지
    • /
    • 제29권3호
    • /
    • pp.224-230
    • /
    • 2015
  • Vessels are traditionally optimized for a single condition, normally the contract speed at the design draft. The actual operating conditions quite often differ significantly. At other speed and draft combinations, adjusting the trim can often be used to reduce the hull resistance. Changing the trim is easily done by shifting ballast water. There are several ways to assess the effect of the trim on the hull resistance and fuel consumption, including in-service measurements, model tests, and CFD. In this paper, CFD is employed for the assessment of the resistance performance according to the trim conditions. The commercial CFD code of the STAR-CCM+ is utilized to evaluate the ship’s resistance performance on a 6,800 TEU container ship. To validate of the effectiveness of STAR-CCM+, the experimental result of the KCS hull form is compared with the result from STAR-CCM+. It is found that the total resistance of the 6,8000 TEU container ship was reduced by 2.6% in the case of a 1-m trim by head at 18knots.

전용 피더 서비스 연계를 통한 Grand Alliance 컨테이너 서비스 항로의 운영 개선에 관한 사례 연구: '극동-북미서안' 컨테이너 서비스 항로를 중심으로 (A Case Study on a Way of Improving the Grand Alliance Container Service Route by Incorporating Dedicated Feeders - Focusing on 'Far East-West Coast of North America' Route -)

  • 김우진;신정훈;장명희
    • 한국항해항만학회지
    • /
    • 제36권5호
    • /
    • pp.409-418
    • /
    • 2012
  • 컨테이너 선사들은 세계경제의 불황과 고유가가 지속되고 있는 상황에서 선박운영비용을 낮추기 위한 다각적인 노력들을 전개하고 있다. 이러한 상황에서, Grand Alliance는 극동 북미서안 서비스인 CCX와 극동 북미동안 서비스인 NCE에 서비스별 선박추가 투입대신에 Dedicated Feeder 투입을 하기로 결정하였다. 즉, 기간항로의 선박이 북중국항만에 기항하지 않고 환적항인 부산항에서 Feeder선을 통하여 환적 운송하게 된다. 본 연구에서는 전용피더 서비스 도입을 통한 환적의 경제성 효과를 확인하기 위하여 Grand Alliance 컨테이너 서비스의 실제 운영 자료에 대해 분석하였다. 이와 같은 전략을 통해 Grand Alliance의 'NCE, 'CCX'항로는 기간항로에 투입되는 선박의 감속운항이 가능하게 되어 선박 운영비의 절감 효과를 보이고 있다.