• Title/Summary/Keyword: Slow release tablet

Search Result 6, Processing Time 0.022 seconds

Preparation and Dissolution Characteristics of the Compression-Coated Controlled Release Tablet Exhibiting Three-step Release (압축코팅법에 의한 3단계 약물방출형 지속성제제의 제조 및 용출특성)

  • Kim, Cheol-Soo;Kwon, Hyeok-Lo;Cha, Bong-Jin;Kwon, Jong-Won;Yang, Joong-Ik;Min, Shin-Hong
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.2
    • /
    • pp.133-137
    • /
    • 1992
  • A novel oral controlled release tablet which may offer more uniform drug level in the body than simple zero-order was developed. The tablet is composed of three layers; outer film layer, middle part compression-coated hydroxypropylmethylcellulose (HPMC) matrix layer, and inner core layer. Each layer contains nicardipine HCl as a model drug. In vitro dissolution test showed that the tablet released the drug in clear three steps; a rapid initial release, followed by a constant rate of release, and then a second phase of fast release of drug. The dissolution characteristics could be modified easily by changing the grade of HPMC, thickness of matrix layer, content of methylcellulose in matrix layer, content of active ingredient in each layer. The pH of dissolution medium did not affect the release profile. This three-step release system is expected to raise the blood concentration rapidly to effective level and to maintain effective blood level longer than simple slow-release systems.

  • PDF

Assessing the Role of Citric Acid in Denitrification of Nitrate in Slow-releasing Carbon Source Tablet (완효성 탄소원 정제 내 citric acid의 생물학적 탈질소화 영향)

  • Han, Kyungjin;Yeum, Yuhoon;Kim, Young;Kwon, Sooyoul
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.3
    • /
    • pp.41-49
    • /
    • 2022
  • This study utilized citric acid as a floating agent in biological denitrification process and assessed its role under different carbon supplying conditions. Several microcosm tests including citric acid active (CAA), precipitating tablet release active (PTRA) and floating tablet release active (FTRA) were conducted to evaluate nitrate denitrification efficacy. In CAA reactors, nitrate removal was accompanied by the formation of denitrification by-products such as nitrite and nitrous oxide, with the extent of nitrate removal being proportional to citric acid concentration. These results suggest that citric acid induced heterotrophic biological denitrification. PTRA reactor that incorporated CAA and the same electron donor showed a similar denitrification efficiency to CAA reactor. FTRA reactor, which contained the same amount of fumarate as PTRA, enhanced denitrification by 7% as compared to the PTRA reactor. The overall results of this work indicate that surplus citric acid can be efficiently utilized in heterotrophic denitrification.

Formulation Design of Sustained-Release Matrix Tablets Containing 4-Aminopyridine (유드라짓과 알긴산 나트륨 매트릭스를 이용한 4-Aminopyridine의 서방성 제제설계)

  • Kim, Jeong-Soo;Kim, Dong-Woo;Lee, Gye-Won;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.6
    • /
    • pp.453-460
    • /
    • 2005
  • 4-Aminopyridine (AP) is a potassium channel blocker used in the treatment of neurological disorders such as multiple sclerosis and Alzheimer disease. AP‘s window of therapeutic effect appears to correlate with its plasma halflife (3.5 hours). It demonstrates pH-dependent solubility because of a weakly basic drug. In addition, the resulting release from conventional matrix tablets decreases with increasing pH-milieu of the gastrointestinal tract. The aim of this study is to design sustained release matrix tablet containing AP, overcoming this problem. $Eudragit^{\circledR}$ L 100 (EuL) and sodium alginate were used in an effort to achieve pH independent drug release. The effect of sodium alginate and EuL on drug release from matrix tablet was investigated. The drug release behavior from the different tablets was analyzed by $t_{20%},\;t_{40%},\;t_{60%}$, The exponential diffusion coefficient n, kinetic constant K were calculated according to the Korsmeyer-Peppas equation. The drug release from matrix tablets prepared with sodium alginate was decreased with increasing the content of sodium alginate in pH 7.4 while there is no significant difference in pH 1.2. The exponent n values were determined to be approximately 0.5 and 0.8 respectively, in both pH 1.2 and 7.4. These values indicate diffusion-based anomalous mechanism and erosion-based anomalous mechanism, respectively. The drug release from sodium alginate matrix tablets prepared with solid dispersion of EuL containing drug showed a slow drug release in an acidic medium and a more fast drug release in phosphate medium, compared with sodium alginate matrix tablets prepared with physical mixture. These results may be attributed to the gel forming ability of sodium alginate and pH dependent solubility of EuL. Therefore, sustained-release AP matrix tablets using sodium alginate and EuL were successfully prepared.

Bioequivalence Test of Slow-Release Theophylline Dosage Forms Using Saliva Samples (타액 시료를 이용한 지속성 테오필린 제제의 생물할적 동등성 시험)

  • Shim, Chang-Koo;Kwon, Hyeok-Lo;Lee, Chang-Ki;Han, Ik-Soo;Choi, Kwang-Sik
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.4
    • /
    • pp.191-194
    • /
    • 1989
  • Bioequivalence test of $Asthcontin^{\circledR}$ tablet, a commercial slow-release theophylline (TP) dosage form, was performed using $Slo-bid^{\circledR}$ capsule as the reference. Since it has been confirmed that the saliva concentration of TP is closely correlated with the plasma concentration in man, the area under the saliva concentration-time curve was used as a bioavailability parameter. The statistical analysis showed that the two dosage forms are equivalent in bioavailability estimating from the saliva concentration. The results supported that the use of soliva as a test sample provides simple and easy techniques for bioequivalence tests of TP-containing dosage forms.

  • PDF

The Formulation and Dissolution Properties of Oral Sustained Release Sulindac Delivery System (설린닥의 경구용 지속성 제제설계 및 용출특성)

  • Rhee, Gye-Ju;Park, Sun-Hee;Suh, Sung-Su;Whang, Sung-Joo
    • YAKHAK HOEJI
    • /
    • v.41 no.1
    • /
    • pp.48-59
    • /
    • 1997
  • Sustained release matrix tablets, pellets, and coated pellets for the delivery of sulindac were prepared using cellulose derivatives at various ratios, and evaluated for the dis solution pattern. The release of sulindac, from matrix tablets prepared with low viscosity HPMC was relatively fast, and especially the tablets made of Metolose SM released all of sulindac within 1 hr. The release of drug from tablets made of other HPMC derivatives were retarded in the order of the following: Pharmacoat 645>Pharmacoat 606>Pharrnacoat 606+HPC-L>HPC-L. The most sustained release pattern was observed with the preparation of high viscous polymer. Metolose 90 SH. While release of sulindac, from matrix type pellet containing 10mg/cap of Metolose 90 SH or 60 SH was completed within 1 hr, a prolonged release formulation (30% in 1 hr) was obtained by the inclusion of EC. Pellets coated with HPMC showed a fast release pattern (${\geq}$ 80% within 2 hrs), whereas pellets coated with HPMC and EC (molar ratio 1 : 1) showed a sustained release pattern (${\geq}$ 80% in 12 hrs), vath the release from EC pellets being the most sustained. Fast (naked) and slow release pellets coated with EC, Metolose 60SH 50cps and propylene glycol. and enteric pellets coated with HPMCP 55 and Myvacet$^{\circledR}$ were prepared, and combined at various ratios for the assessment of dissolution pattern. The result indicates the possibility that the development of 24 hr sustained release delivery systems containing sulindac for oral administration could be achieved by means of combining sustained and fast release pellets at a proper portion.

  • PDF

The Bioequivalence of Two Carbamazepine Controlled Release Formulations (카르바마제핀 서방형 제제간의 생물학적 동등성 비교)

  • Kim, Min J.;Lee, Hyun J.;Rheu, Yoon M.;Shin, Wan G.;Park, Sung H.
    • Korean Journal of Clinical Pharmacy
    • /
    • v.6 no.2
    • /
    • pp.19-23
    • /
    • 1996
  • Carbamazepine is an anticonvulsant drug that has been shown to be as effective as phenytoin or phenobarbital in treatment of grand mal and complex partial seizures and is also approved as the drug of choice for treatment of the pain associated with trigerminal neuralgia. And the therapeutic or toxic effects of carbamazepine are better related to plasma concentration than to dosage, which can be attributed to interindividual variability in the pharmacokinetics. A slow rate of carbamazepine dissolution in the gastrointestinal tract is believed to be the cause of its relatively slow and erratic rate of absorption. For these reasons pharmacokinetic evaluation of newly formulated carbamazepine is neccessary. In this study, the bioequivalence in carbamazepine between the $TegretoI^{TM}$ CR tablet (Geigy Co.) and $Carmazepine^{TM}$ CR tablet (Myung In Co.) was evaluated. 12 normal volunteers (age $21\~27$ years old) was divided into two groups, and a randomized cross-over study was employed. The pharmacokinetic parameters ($C_{max},\;T_{max}$ and AUC) obtained of oral administration of each formulatim of carbamazepine 400 mg were evaluated and ANOVA was utilized for the statistical analysis of parameters. $C_{max}\;is\;8.26{\pm}3.1{\mu}g/ml\;(C.V.\;37.3\%)\;in\;TegretoI^{TM}\;and\;9.39\{pm}2.9{\mu}g/ml\;(C.V.\;30.5\%)$ in $Carmazepine^{TM},\;T_{max}\;is\;28.0{\pm}5.9\;hrs(C.V.\;21.1\%)$ in $Tegretol^{TM}\;and\;24.0{\pm}7.2\;hrs(C.V.\;30.2\%)$ in $Carmazepine^{TM}$ and AUC is $786.4{\pm}360.5{\mu}g{\cdot}hr/ml\;(C.V.\;45.8\%)$ in $TegretoI^{TM}\;and\;792.8{\pm}228.6{\mu}g{\cdot}hr/ml\;(C.V.\;28.8\%)$ in $Carmazepine^{TM}$, respectively. As the result of the data, two formulations are bioequvalent, and the lower C.V. of $Carmazepine^{TM}$ in every individual can be merit.

  • PDF