• Title/Summary/Keyword: Slotless PM BLDC

Search Result 6, Processing Time 0.02 seconds

Speed Control of Three Phase Slotless PM BLDC Motor Using Single Sensor (Single Sensor를 이용한 3상 슬롯리스 PM BLDC 전동기의 속도제어)

  • Yoon Y. H.;Kim Y. C.;Lee S. S.;Won C. Y.;Choe Y. Y.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.536-543
    • /
    • 2004
  • Slotless Permanent Magnet Brushless DC Motor(PM BLDC) with the characteristics of high speed and power density has been more widely used In Industrial and factory machine. Generally, PM BLDC meter is necessary that the three Hall-lCs evenly be distributed around the stator circumference in case of the 3 phase motor. The Hall-ICs are set up in PM BLDC Motor to detect the main flux from the rotor. therefore the output signal from Hall-ICs is used to drive a power transistor to control the stator winding current. However, instead of using three Hall-ICs, if it used only one Hall-IC, we can estimate information of the others phase in sequence through a rotor This paper identified the characteristics and performance by using one Hall-IC with the 3-phase, 2-pole, 6-slot PM BLDC motor.

Speed Control of Three Phase Slotless PM BLDC Motor Using Single Sensor (Single Sensor를 이용한 3상 Slotless PM BLDC 전동기의 속도제어)

  • Lee S. J.;Yoon Y. H.;Woo M. S.;Won C. Y.;Choe Y. Y.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.33-37
    • /
    • 2004
  • Slotless Permanent magnet Brushless DC Motor(PM BLDC) with the characteristics of high speed and high power density has been more widely used in industrial and automatic machine. Generally, PM BLDC meter is necessary that the three Hall-ICs evenly be distributed around the stator circumference in case of the 3 phase motor. The Hall-ICs are set up in this motor to detect the main flux from the rotor. therefore the output signal from Hall-ICs is used to drive a power transistor to control the stator winding current. However, instead of using three Hall-ICs, if only we used one Hall-IC, we estimate information of the others phase in sequence through a revolving rotor. This paper identified the characteristics and performance by using one Hall-IC for the 3 phase PM BLDC whose six stator and two rotor designed.

  • PDF

PLL Control Method for Precise Speed Control of Slotless PM Brushless DC Motor Using 2 Hall-ICs (2 Hall-ICs를 이용한 Slotless PM Brushless DC Motor의 정밀속도제어를 위한 PLL 제어방식)

  • Yoon Y.H;Lee S.J;Kim Y.R;Won C.Y;Choe Y.Y
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.109-116
    • /
    • 2005
  • The high performance drives of the slotless Permanent Magnet Brushless DC(PM BLDC) motor can be achieved by the current control, where the currents flow according to the rotor position and the current phase is suitably controlled according to the operational condition. Rotor position information can be provided by Hall-IC or sensorless algorithm. So, the Hall-ICs are set up in this motor to detect the main flux from the rotor. Instead of using three Hall-ICs and encoder, this paper uses only two Hall-ICs for the permanent magnet rotor position and the speed feedback signals, and uses a micro-controller of 16-bit type (80C196KC). Also because of low resolution obtained by using Hall-IC even low-cost and simple structure, to improve the wide range of speed response characteristic more exactly, we propose the rotor position signal synthesizer using PLL circuit based on two Hall-ICs.

PLL Control Method for Precise Speed Control of Slotless PM Brushless DC Motor Using 2 Hall-ICs (2 Hall-ICs를 이용한 Slotless PM Brushless DC Motor의 정밀속도제어를 위한 PLL 제어방식)

  • Woo M. S.;Yoon Y. H.;LEE T. W.;Won C. Y.;Choe Y. Y.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.665-669
    • /
    • 2004
  • Generally, Slotless PM BLDC drive system is necessary that the three Hall-ICs evenly be distributed around the stator circumference and encoder be installed in case of the 3 phase motor. So, the Hall-ICs are set up in this motor to detect the main flux from the rotor, and the output signal from Hall-ICs is used to drive a power transistor to control the winding current. However, instead of using three Hall-ICs and encoder, we used only two Hall-ICs for the permanent magnet rotor position and for the speed feedback signals, and also for a microcontroller of 16-bit type (80C196KC) with the 3 phase Slotless PM BLDC whose six stator and two rotor designed. Two Hall-IC Hc and $H_B$ are placed on the endplate at 120 degree intervals, and with these elements, we can estimate information of the others phase in sequence through a rotating rotor.

  • PDF

Analysis on Slotless BLDC Motors according to Magnetization pattern (슬롯리스형 BLDC 전동기의 자화패턴에 따른 특성 해석)

  • Jang Seok-Myeong;Park Ji-hoon;Choi Jang-Young;Ryu Dong-Wan
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1070-1072
    • /
    • 2004
  • In this paper, the characteristic of slotless permanent magnet brushless motors analyze and compare parallel with radial way. This paper derive magnetic field solutions due to the PM. Torque, flux linkage and back emf are then derived. The results are shown in good conformity with those obtained from the commonly used finite element analysis.

  • PDF

Analysis of a Magnetic Field According to Eccentricity in Brushless DC M01 (BLDC 모터에서의 편심에 따른 자계특성 해석)

  • Jang, S.M.;Yoon, I.K.;Lee, S.H.;Choi, S.K.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.706-708
    • /
    • 2002
  • Vibration, giving rise to acoustical noise, is an important index of motor performance. The unbalance force due to rotor eccentricity caused by manufacturing imprecision or bearing defects is one possible source of excitation to vibration. With the advent of new high-energy magnetic material together with high precision motor applications, magnetic sources of vibration are becoming more serious. This paper introduces two types of high-speed slotless permanent magnet (PM) machine for electro-mechanical battery and investigates unbalance force due to static eccentricity with finite element method.

  • PDF