• Title/Summary/Keyword: Sloshing effect

Search Result 105, Processing Time 0.023 seconds

Seismic control of structures using sloped bottom tuned liquid dampers

  • Bhosale, Amardeep D.;Murudi, Mohan M.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.233-241
    • /
    • 2017
  • Earlier numerous studies have been done on implementation of Tuned Liquid Damper (TLD) for structural vibration control by many researchers. As per current review there is no significant study on a sloped bottom TLD. TLD's are passive devices. A TLD is a tank rigidly attached to the structure and filled partially by liquid. When fundamental linear sloshing frequency is tuned to structure's natural frequency large sloshing amplitude is expected. In this study set of experiments are conducted on flat bottom and sloped bottom TLD at beach slope $20^{\circ}$, $30^{\circ}$ and $45^{\circ}$, for different types of structures, mass ratio, and depth ratio to investigate the overall effectiveness of TLD and specific effect of TLD parameters on structural response. This experimental study shows that a properly designed TLD reduces structural response. It is also observed that effectiveness of TLD increases with increase in mass ratio. In this experimental study an effectiveness of sloped bottom TLD with beach slope $30^{\circ}$ is investigated and compared with that of flat bottom TLD in reducing the structural response. It is observed from this study that efficiency of sloped bottom TLD in reducing the response of structure is more as compared to that of flat bottom TLD. It is shown that there is good agreement between numerical simulation of flat bottom and sloped bottom TLD and its experimental results. Also an attempt has been made to investigate the effectiveness of sloped bottom TLD with beach slope $20^{\circ}$ and $45^{\circ}$.

A Study on Dynamic Modelling and Mass Properties Estimation of the Lunar Module (달 탐사선의 동역학 모델링 및 관성 모멘트 추정에 관한 연구)

  • Shim, Sang-Hyun;Kim, Kwang-Jin;Lee, Sang-Chul;Ko, Sang-Ho;Rhyu, Dong-Young;Ju, Gwang-Hyeok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.30-37
    • /
    • 2010
  • This paper deals with attitude determination and parameter estimation problems for a lunar module. For this we first derive equations of motion for the lunar module by considering allocation locations (configurations) of reaction thruster and a reaction wheel assembly. The lunar module is assumed as a rigid body. In order to include the effect of fuel sloshing on the dynamics of the lunar module, we model it as a spherical pendulum for a simple analysis. For estimating angular rates and moment of inertia of the module, we employ an extended Kalman filter and the least mean square algorithms, respectively. Finally we construct a dynamical model for the lunar module by combining all these elements.

Testing of tuned liquid damper with screens and development of equivalent TMD model

  • Tait, M.J.;El Damatty, A.A.;Isyumov, N.
    • Wind and Structures
    • /
    • v.7 no.4
    • /
    • pp.215-234
    • /
    • 2004
  • The tuned liquid damper (TLD) is increasingly being used as an economical and effective vibration absorber. It consists of a water tank having the fundamental sloshing fluid frequency tuned to the natural frequency of the structure. In order to perform efficiently, the TLD must possess a certain amount of inherent damping. This can be achieved by placing screens inside the tank. The current study experimentally investigates the behaviour of a TLD equipped with damping screens. A series of shake table tests are conducted in order to assess the effect of the screens on the free surface motion, the base shear forces and the amount of energy dissipated. The variation of these parameters with the level of excitation is also studied. Finally, an amplitude dependent equivalent tuned mass damper (TMD), representing the TLD, is determined based on the experimental results. The dynamic characteristics of this equivalent TMD, in terms of mass, stiffness and damping parameters are determined by energy equivalence. The above parameters are expressed in terms of the base excitation amplitude. The parameters are compared to those obtained using linear small amplitude wave theory. The validity of this nonlinear model is examined in the companion paper.

Mitigation of seismic collision between adjacent structures using roof water tanks

  • Mahmoud, Sayed
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.171-184
    • /
    • 2020
  • The potential of using the roof water tanks as a mitigation measure to minimize the required separation gap and induced pounding forces due to collisions is investigated. The investigation is carried out using nonlinear dynamic analysis for two adjacent 3-story buildings with different dynamic characteristics under two real earthquake motions. For such analysis, nonlinear viscoelastic model is used to simulate forces due to impact. The sloshing force due to water movement is modelled in terms of width of the water tank and the instantaneous wave heights at the end wall. The effect of roof water tanks on the story's responses, separation gap, and magnitude and number of induced pounding forces are investigated. The influence of structural stiffness and storey mass are investigated as well. It is found that pounding causes instantaneous acceleration pulses in the colliding buildings, but the existence of roof water tanks eliminates such acceleration pulses. At the same time the water tanks effectively reduce the number of collisions as well as the magnitude of the induced impact forces. Moreover, buildings without constructed water tanks require wider separation gap to prevent pounding as compared to those with water tanks attached to top floor under seismic excitations.

Effect of Pretension on Moored Ship Response

  • Sajjan, Sharanabasappa C.;Surendran, S.
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.4
    • /
    • pp.175-187
    • /
    • 2013
  • Moonpools are vertical wells in a floating body used onboard many types of vessels like Exploration and drilling vessels, Production barges, Cable-laying vessels, Rock dumping vessels, Research and offshore support vessels. Moonpool gives passage to underwater activities for different types of ships as per their mission requirements. It is observed that inside a moonpool considerable relative motions may occur, depending on shape, depth of the moonpool and on the frequency range of the waves to which the ship is exposed. The vessel responses are entirely different in zero and non-zero Froude number. Former situation is paid attention in this study as the mission requirement of the platform is to be in the particular location for long period of operation. It is well known that there are two modes of responses depending on the shape of the moonpool viz., piston mode for square shape and sloshing mode for rectangular shapes with different aspect ratios of opening like 1:1.5 and 1:2 ratios. Circular shaped moonpool is also tested for measuring the responses. The vessel moored using heavy lines are modelled and tested in the wave basin. The pretensions of the lines are varied by altering the touchdown points and the dynamic tensions on the lines are measured. The different modes of oscillations of water column are measured using wave gauge and the vessel response at a particular situation is determined. RAOs calculated for various situations provide better insight to the designer.

Adaptive fluid-structure interaction simulation of large-scale complex liquid containment with two-phase flow

  • Park, Sung-Woo;Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • v.41 no.4
    • /
    • pp.559-573
    • /
    • 2012
  • An adaptive modeling and simulation technique is introduced for the effective and reliable fluid-structure interaction analysis using MSC/Dytran for large-scale complex pressurized liquid containment. The proposed method is composed of a series of the global rigid sloshing analysis and the locally detailed fluid-structure analysis. The critical time at which the system exhibits the severe liquid sloshing response is sought through the former analysis, while the fluid-structure interaction in the local region of interest at the critical time is analyzed by the latter analysis. Differing from the global coarse model, the local fine model considers not only the complex geometry and flexibility of structure but the effect of internal pressure. The locally detailed FSI problem is solved in terms of multi-material volume fractions and the flow and pressure fields obtained by the global analysis at the critical time are specified as the initial conditions. An in-house program for mapping the global analysis results onto the fine-scale local FSI model is developed. The validity and effectiveness of the proposed method are verified through an illustrative numerical experiment.

Study on the Effects of Computational Parameters in SPH Method (SPH 기법의 계산인자 민감도에 대한 연구)

  • Kim, Yoo-Il;Nam, Bo-Woo;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.4
    • /
    • pp.398-407
    • /
    • 2007
  • A smoothed particle hydrodynamics (SPH) method is applied for simulating two-dimensional free-surface problems. The SPH method based on the Lagrangian formulation provides realistic flow motions with violent surface deformation, fragmentation and reunification. In this study, the effect of computational parameters in SPH simulation is explored through two-dimensional dam-breaking and sloshing problem. The parameters to be considered are the speed of sound, the frequency of density re-initialization, the number of particle and smoothing length. Through a series of numerical test. detailed information was obtained about how SPH solution can be more stabilized and improved by adjusting computational parameters. Finally, some numerical simulations for various fluid flow problem were carried out based on the parameters chosen through the sensitivity study.

Shaking table tests on a SDOF structure with cylindrical and rectangular TLDs having rotatable baffles

  • Zahrai, Seyed Mehdi;Kakouei, Sirous
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.391-401
    • /
    • 2019
  • Control of vibrations against extraordinary excitations such as wind and earthquake is very important to the protection of life and financial concerns. One of the methods of structural control is to use Tuned Liquid Damper (TLD), however due to the nature of TLD only one sloshing frequency can be created when the water is sloshing. Among various ideas proposed to compensate this problem, by changing the angle of some rotatable baffles embedded inside a TLD, a frequency range is created such that these baffles are tuned manually at different frequencies. In this study, the effect of cross sectional shape of container with rotating baffles on seismic behavior of TLD is experimentally studied. For this purpose, rectangular and cylindrical containers are designed and used to suppress the vibrations of a Single Degree-Of-Freedom (SDOF) structure under harmonic and earthquake excitations considering three baffle angles. The results show that the rectangular-shaped damper reduces the structural response in all load cases more than the damper with a cylindrical shape, such that maximum differences of two dampers to reduce the structural displacement and structural acceleration are 5.5% and 3% respectively, when compared to the cases where no baffles are employed.

Experimental study on models of cylindrical steel tanks under mining tremors and moderate earthquakes

  • Burkacki, Daniel;Jankowski, Robert
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.175-189
    • /
    • 2019
  • The aim of the study is to show the results of complex shaking table experimental investigation focused on the response of two models of cylindrical steel tanks under mining tremors and moderate earthquakes, including the aspects of diagnosis of structural damage. Firstly, the impact and the sweep-sine tests have been carried out, so as to determine the dynamic properties of models filled with different levels of liquid. Then, the models have been subjected to seismic and paraseismic excitations. Finally, one fully filled structure has been tested after introducing two different types of damages, so as to verify the method of damage diagnosis. The results of the impact and the sweep-sine tests show that filling the models with liquid leads to substantial reduction in natural frequencies, due to gradually increasing overall mass. Moreover, the results of sweep-sine tests clearly indicate that the increase in the liquid level results in significant increase in the damping structural ratio, which is the effect of damping properties of liquid due to its sloshing. The results of seismic and paraseismic tests indicate that filling the tank with liquid leads initially to considerable reduction in values of acceleration (damping effect of liquid sloshing); however, beyond a certain level of water filling, this regularity is inverted and acceleration values increase (effect of increasing total mass of the structure). Moreover, comparison of the responses under mining tremors and moderate earthquakes indicate that the power amplification factor of the mining tremors may be larger than the seismic power amplification factor. Finally, the results of damage diagnosis of fully filled steel tank model indicate that the forms of the Fourier spectra, together with the frequency and power spectral density values, can be directly related to the specific type of structural damage. They show a decrease in the natural frequencies for the model with unscrewed support bolts (global type of damage), while cutting the welds (local type of damage) has resulted in significant increase in values of the power spectral density for higher vibration modes.

The effect of composite-elastomer isolation system on the seismic response of liquid-storage tanks: Part I

  • Shahrjerdi, A.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.513-528
    • /
    • 2018
  • A typical viable technique to decrease the seismic response of liquid storage tanks is to isolate them at the base. Base-isolation systems are an efficient and feasible solution to reduce the vulnerability of structures in high seismic risk zones. Nevertheless, when liquid storage tanks are under long-period shaking, the base-isolation systems could have different impacts. These kinds of earthquakes can damage the tanks readily. Hence, the seismic behaviour and vibration of cylindrical liquid storage tanks, subjected to earthquakes, is of paramount importance, and it is investigated in this paper. The Finite Element Method is used to evaluate seismic response in addition to the reduction of excessive liquid sloshing in the tank when subjected to the long-period ground motion. The non-linear stress-strain behaviour pertaining to polymers and rubbers is implemented while non-linear contact elements are employed to describe the 3-D surface-to-surface contact. Therefore, Nonlinear Procedures are used to investigate the fluid-structure interactions (FSI) between liquid and the tank wall while there is incompressible liquid. Part I, examines the effect of the flexibility of the isolation system and the tank aspect ratio (height to radius) on the tank wall radial displacements of the tank wall and the liquid sloshing heights. Maximum stress and base shear force for various aspect ratios and different base-isolators, which are subjected to three seismic conditions, will be discussed in Part II. It is shown that the composite-base isolator is much more effective than other isolators due to its high flexibility and strength combined. Moreover, the base isolators may decrease the maximum level pertaining to radial displacement.