• 제목/요약/키워드: Sloshing behavior

검색결과 68건 처리시간 0.025초

Along and across-wind vibration control of shear wall-frame buildings with flexible base by using passive dynamic absorbers

  • Ivan F. Huergo;Hugo Hernandez-Barrios;Roberto Gomez-Martinez
    • Wind and Structures
    • /
    • 제38권1호
    • /
    • pp.15-42
    • /
    • 2024
  • A flexible-base coupled-two-beam (CTB) discrete model with equivalent tuned mass dampers is used to assess the effect of soil-structure interaction (SSI) and different types of lateral resisting systems on the design of passive dynamic absorbers (PDAs) under the action of along-wind and across-wind loads due to vortex shedding. A total of five different PDAs are considered in this study: (1) tuned mass damper (TMD), (2) circular tuned sloshing damper (C-TSD), (3) rectangular tuned sloshing damper (R-TSD), (4) two-way liquid damper (TWLD) and (5) pendulum tuned mass damper (PTMD). By modifying the non-dimensional lateral stiffness ratio, the CTB model can consider lateral deformations varying from those of a flexural cantilever beam to those of a shear cantilever beam. The Monte Carlo simulation method was used to generate along-wind and across-wind loads correlated along the height of a real shear wall-frame building, which has similar fundamental periods of vibration and different modes of lateral deformation in the xz and yz planes, respectively. Ambient vibration tests were conducted on the building to identify its real lateral behavior and thus choose the most suitable parameters for the CTB model. Both alongwind and across-wind responses of the 144-meter-tall building were computed considering four soil types (hard rock, dense soil, stiff soil and soft soil) and a single PDA on its top, that is, 96 time-history analyses were carried out to assess the effect of SSI and lateral resisting system on the PDAs design. Based on the parametric analyses, the response significantly increases as the soil flexibility increases for both type of lateral wind loads, particularly for flexural-type deformations. The results show a great effectiveness of PDAs in controlling across-wind peak displacements and both along-wind and across-wind RMS accelerations, on the contrary, PDAs were ineffective in controlling along-wind peak displacements on all soil types and different kind of lateral deformation. Generally speaking, the maximum possible value of the PDA mass efficiency index increases as the soil flexibility increases, on the contrary, it decreases as the non-dimensional lateral stiffness ratio of the building increases; therefore, there is a significant increase of the vibration control effectiveness of PDAs for lateral flexural-type deformations on soft soils.

Fluid-structure-soil interaction analysis of cylindrical liquid storage tanks subjected to horizontal earthquake loading

  • Kim, Jae-Min;Chang, Soo-Hyuk;Yun, Chung-Bang
    • Structural Engineering and Mechanics
    • /
    • 제13권6호
    • /
    • pp.615-638
    • /
    • 2002
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure considering the effects of the interior fluid and exterior soil medium in the frequency domain. The horizontal and rocking motions of the structure are included in this study. The fluid motion is expressed in terms of analytical velocity potential functions, which can be obtained by solving the boundary value problem including the deformed configuration of the structure as well as the sloshing behavior of the fluid. The effect of the fluid is included in the equation of motion as the impulsive added mass and the frequency-dependent convective added mass along the nodes on the wetted boundary of the structure. The structure and the near-field soil medium are represented using the axisymmetric finite elements, while the far-field soil is modeled using dynamic infinite elements. The present method can be applied to the structure embedded in ground as well as on ground, since it models both the soil medium and the structure directly. For the purpose of verification, earthquake response analyses are performed on several cases of liquid tanks on a rigid ground and on a homogeneous elastic half-space. Comparison of the present results with those by other methods shows good agreement. Finally, an application example of a reinforced concrete tank on a horizontally layered soil with a rigid bedrock is presented to demonstrate the importance of the soil-structure interaction effects in the seismic analysis for large liquid storage tanks.

실물크기 구조물에 설치된 동조액체질량감쇠기의 성능실험 (Performance Test of a Tuned Liquid Mass Damper installed in a Real-Scaled Structure)

  • 허재성;박은천;이성경;이상현;김홍진;조지성;조봉호;주석준;민경원
    • 한국전산구조공학회논문집
    • /
    • 제21권2호
    • /
    • pp.161-168
    • /
    • 2008
  • 본 연구에서는 하나의 제어장치로 서로 직교하는 2방향의 건물응답을 동시에 제어할 수 있는 동조액체질량감쇠기(Tuned Liquid Mass Damper; TLMD)를 제안하고 제어성능을 실험적으로 검증하였다. 본 연구에서 제안된 TLMD는 한 방향으로는 동조액체기둥감쇠기(Tuned Liquid Column Damper; TLCD) 내부에 채워진 액체의 운동에너지를 이용하여 구조물의 응답을 제어하게 된다. 그리고, 다른 한 방향 즉 TLCD의 직각 방향으로는 LM guide(linear motion guide) 위에 놓인 TLCD 수조와 내부의 액체의 질량을 이용하여 동조질량감쇠기(Tuned Mass Damper; TMD)로 거동하게 함으로써 구조물의 응답을 감소시킨다. 이와 같은 TLMD의 양방향 독립거동 특성을 증명하기 위해 실물크기의 구조물에 설치하여 강제진동실험을 수행하였다. 실험결과, 양방향 모두 대상 구조물의 응답을 감소시키는 것을 확인하여 제안된 TLMD의 효용성을 검증하였다.

멤브레인형 LNG선 화물창 단열시스템의 수면낙하 내충격 응답해석 -II : 내충격 응답거동에 미치는 영향 고찰- (Wet Drop Impact Response Analysis of CCS in Membrane Type LNG Carriers -II : Consideration of Effects on Impact Response Behaviors-)

  • 이상갑;황정오;김화수
    • 대한조선학회논문집
    • /
    • 제45권6호
    • /
    • pp.735-749
    • /
    • 2008
  • For the development of the original technique of structural safety assessment of Cargo Containment System(CCS) in membrane type LNG carriers, it is necessary to understand the characteristics of dynamic response behavior of CCS structure under sloshing impact pressure. In the previous study, the wet drop impact response analyses of CCS structure in membrane Mark III type LNG carriers were carried out by using Fluid-Structure Interaction(FSI) analysis technique of LS-DYNA code, and were also validated through a series of wet drop experiments for the enhancement of more accurate shock response analysis technique. In this study, the characteristics of structural shock response behaviors of CCS structure were sufficiently figured out by careful examinations of the effects of specimen weight, drop height, incident angle, corrugation and stiffness of inner hull on its shock response behaviors. The shock response analysis of upward shooting fluid to inner hull was performed, and the reason of faster strain response than shock pressure one was also figured out.

폴리우레탄 폼의 비선형 압축거동을 모사하기 위한 밀도 영향이 고려된 수정 Gurson 모델의 제안 (Modified Gurson Model to Describe Non-linear Compressive Behaviour of Polyurethane Foam with Considering Density Effect)

  • 이정호;박성보;김슬기;방창선;이제명
    • 한국전산구조공학회논문집
    • /
    • 제28권5호
    • /
    • pp.543-551
    • /
    • 2015
  • 뛰어난 단열성능을 가지는 폴리우레탄 폼(polyurethane foam, PUF)은 다양한 구조물에서 다른 재료들과 함께 사용되고 있다. 현재 LNG 운반선의 단열시스템에는 유리섬유로 강화된 폴리우레탄 폼(reinforced-polyurethane foam, R-PUF)이 사용되고 있으며, 이는 단열재 역할뿐만 아니라 슬로싱 하중을 포함한 다양한 압축하중에 대한 구조부재 기능을 수행하고 있다. 폴리우레탄 폼은 혼합과 발포를 통해 제작되는 다공성 재료이기 때문에, 본 연구에서는 기공체적비율을 통해 재료의 거동을 모사할 수 있는 Gurson damage model을 사용하여 폴리우레탄 폼의 비선형 압축거동을 모사하였으며, 폴리우레탄 폼의 기계적 성질에 영향을 미치는 영향변수로서 기공체적비율에 의존적으로 알려져 있는 밀도를 설정하였다.

Seismic behavior of liquid storage tanks with 2D and 3D base isolation systems

  • Kilic, Samet;Akbas, Bulent;Shen, Jay;Paolacci, Fabrizio
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.627-644
    • /
    • 2022
  • In past major earthquakes (1994 Northridge, 1995 Kobe, Chi-Chi 1999, Kocaeli 1999), significant damages occurred in the liquid storage tanks. The basic failure patterns were observed to be the buckling of the tank wall and uplift of the anchorage system. The damages in the industrial facilities and nuclear power plants have caused the spread of toxic substances to the environment and significant fires. Seismic isolation can be used in liquid storage tanks to decouple the structure and decrease the structural demand in the superstructure in case of ground shaking. Previous studies on the use of seismic isolation systems on liquid storage tanks show that an isolation system reduces the impulsive response but might slightly increase the convective one. There is still a lack of understanding of the seismic response of seismically isolated liquid storage tanks considering the fluid-structure interaction. In this study, one broad tank, one medium tank, and one slender tank are selected and designed. Two- and three-dimensional elastomeric bearings are used as seismic isolation systems. The seismic performance of the tanks is then investigated through nonlinear dynamic time-history analyses. The effectiveness of each seismic isolation system on tanks' performance was investigated. Isolator tension forces, modal analysis results, hydrodynamic stresses, strains, sloshing heights and base shear forces of the tanks are compared. The results show that the total base shear is lower in 3D-isolators compared to 2D-isolators. Even though the tank wall stresses, and strains are slightly higher in 3D-isolators, they are more efficient to prevent the tension problem.

액체수소 저장 탱크의 중력 방향 및 수소 충전율이 BOG에 미치는 영향에 관한 수치적 연구 (Numerical Study on the Effects of Gravity Direction and Hydrogen Filling Rate on BOG in the Liquefied Hydrogen Storage Tank)

  • 서영민;노현우;하동우;구태형;고락길
    • 한국수소및신에너지학회논문집
    • /
    • 제34권4호
    • /
    • pp.342-349
    • /
    • 2023
  • In this study, a numerical simulations were conducted to analyze the phase change behavior of a liquid hydrogen storage container. The effects of gravity direction and hydrogen filling rate on boil-off gas (BOG) in the storage container were investigated. The study employed the volume of fluid, which is the phase change analysis model provided by ANSYS Fluent (ANSYS, Canonsburg, PA, USA), to investigate the sloshing phenomenon inside the liquefied hydrogen fuel tank. Considering the transient analysis time, two-dimensional simulation were carried out to examine the characteristics of the flow and thermal fields. The results indicated that the thermal flow characteristics and BOG phenomena inside the two-dimensional liquefied hydrogen storage container were significantly influenced by changes in gravity direction and hydrogen filling rate.

액체거동의 비접촉 다점측정을 위한 레이저진동계와 갈바노미터스캐너 계측시스템 (Measurement System of Dynamic Liquid Motion using a Laser Doppler Vibrometer and Galvanometer Scanner)

  • 김준희;신윤수;민경원
    • 한국전산구조공학회논문집
    • /
    • 제31권5호
    • /
    • pp.227-234
    • /
    • 2018
  • 슬로싱과 같은 액체의 동적 거동을 측정하고 제어하는 연구가 다양한 공학분야에서 활발히 진행중이다. 건축공학분야에서도 건축물의 풍진동을 저감시키는 동조액체감쇠기의 연구에 액제 진동이 측정되고 있다. 본 논문에서는 기존 파고 측정 센서의 한계를 극복하기 위하여 레이저 장비 중 LDV와 스캐닝 장비 중 갈바노미터스캐너를 이용하여 동조액체감쇠기 내의 액체 진동을 측정하는 방법을 제안하고 검증하였다. LDV가 속도와 변위를 측정하는 원리를 기술하였고 갈바노미터스캐너의 구동 원리에 따라 LDV의 단일 포인트로 다점측정이 가능한 시스템을 구성하였다. 동조 액체감쇠기의 4점 액체 진동을 측정하여 각 점의 시간 영역 데이터를 기존에 사용하던 비디오 센싱 데이터와 비교하였고 파형 분석을 통해 진행파와 정상파를 구별할 수 있음을 확인하였다. 또한 측정 딜레이가 있는 데이터를 상호 상관을 취하여 특이값 분해를 하고 이론 및 비디오 센싱 결과와 일치하는 고유진동수와 모드형상을 도출하였다.