• Title/Summary/Keyword: Slope reinforcement method

Search Result 156, Processing Time 0.026 seconds

A Case Study on Reinforcement of Slope in PAP Retaining Wall using Back Analysis (PAP옹벽에서 역해석을 이용한 사면보강 사례 연구)

  • Kim, Jang-Deuk;Kim, Yong-Ha
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.345-350
    • /
    • 2009
  • The endpoint of the Yangbuk tunnel constructed at the national road between Gyeongju and Gampo is composed of massive cutting because the road is driven through the sides of mountain. PAP(Prestressed Anchor and PC Pannel) retaining wall as a slope stability method was established over this section. Part of the anchor in PAP wall became broken after six months. We performed inverse analysis through its measurements obtained until that time. An geological investigation to confirm the condition of ground layering and the attraction force test to find as to whether some errors might be present in the anchor were made. According to the back analysis, it was turned out that the value with soil parameter 90% that was applied to the original design was pertinent. In the redesign, the permissible stress in the anchor body was changed from 306 kN to 591 kN and 784 kN and the fixation position was increased from 11.0 m to 23.0 m. Nevertheless, five months have passed since the exchange of the anchor, the measurement results validate that stable state has been maintained. This research is considered a case that the immediate maintenance helps prevent the slope accidents.

A Study on Soil Improvement Agent for Rainfall-Induced Erosion on the Soil Slope (흙 사면의 강우 침식보강을 위한 토양개량제 개발에 관한 연구)

  • Kang, Dae-Heung;Kim, Young-Suk;Hwang, In-Taek;Kim, Jae-Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.237-246
    • /
    • 2021
  • With climate change, debris flow has been increasing due to the collapse and erosion of shallow slopes caused by extreme rainfall. It is preferred to an economical and eco-friendly method rather than reinforcement of soil slopes with the earth anchor or nailing method. In this study, a soil improvement agent was developed by utilizing insitu soil, leaf mold, and used harbal medicine to help sufficient vegetation. In addition, to prevent surface erosion, shear strength of the soil was increased by using micro cement and hemihydrate gypsum as additives. The optimum mix ratio of the mixture is determined by increasing the shear strength by checking the erosion progress of the ground surface layer due to rainfall through an laboratory test. The safety factor of soil slope has been improved on the slope surface reinforced by the improvement agent, and the strength of erosion has been increased, making it efficient to cope with heavy rain during wet season.

Surrounding rock pressure of shallow-buried bilateral bias tunnels under earthquake

  • Liu, Xin-Rong;Li, Dong-Liang;Wang, Jun-Bao;Wang, Zhen
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.427-445
    • /
    • 2015
  • By means of finite element numerical simulation and pseudo-static method, the shallow-buried bilateral bias twin-tube tunnel subject to horizontal and vertical seismic forces are researched. The research includes rupture angles, the failure mode of the tunnel and the distribution of surrounding rock relaxation pressure. And the analytical solution for surrounding rock relaxation pressure is derived. For such tunnels, their surrounding rock has sliding rupture planes that generally follow a "W" shape. The failure area is determined by the rupture angles. Research shows that for shallow-buried bilateral bias twin-tube tunnel under the action of seismic force, the load effect on the tunnel structure shall be studied based on the relaxation pressure induced by surrounding rock failure. The rupture angles between the left tube and the right tube are independent of the surface slope. For tunnels with surrounding rock of Grade IV, V and VI, which is of poor quality, the recommended reinforcement range for the rupture angles is provided when the seismic fortification intensity is VI, VII, VIII and IX respectively. This study is expected to provide theoretical support regarding the ground reinforcement range for the shallow-buried bilateral bias twin-tube tunnel under seismic force.

Numerical Analysis on Morphologic Characteristics of Rock Slope for Reducing Rockfall Risk (낙석의 위험성 경감을 위한 사면의 외적조건 특성에 관한 수치해석적 연구)

  • Ji, Hyun-Woo;Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.20 no.1
    • /
    • pp.15-27
    • /
    • 2010
  • Geo-hazard shows a rapid increasing tendency with establishment of frequent great slopes in various construction sites, especially in the unfavorable topographic condition in which about 70% of the surface is covered by the mountainous area. An repeatedly taking place on the heavy rain season is accompanied by a large scale of rockfall, and causes great damage to an individual as well as a property. Even though lots of field studies and fundamental studies have been performed to reduce this hazard, however, an essential study on the mechanism of the rockfall should be limited to the conventional studies on the slope reinforcement and/or the rockfall risk analysis. In this study, the mechanism of rockfall depending on the morphologic characteristics of slope has been simulated numerically with the PFC2D, one of the discrete element programs. For analyzing its mechanism, the input parameters relating to the slope such as surface condition, gradient, number of benches, bench gradient, and the ratio of bench width to rockfall size were taken into consideration.

Advanced discretization of rock slope using block theory within the framework of discontinuous deformation analysis

  • Wang, Shuhong;Huang, Runqiu;Ni, Pengpeng;Jeon, Seokwon
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.723-738
    • /
    • 2017
  • Rock is a heterogeneous material, which introduces complexity in the analysis of rock slopes, since both the existing discontinuities within the rock mass and the intact rock contribute to the degradation of strength. Rock failure is often catastrophic due to the brittle nature of the material, involving the sliding along structural planes and the fracturing of rock bridge. This paper proposes an advanced discretization method of rock mass based on block theory. An in-house software, GeoSMA-3D, has been developed to generate the discrete fracture network (DFN) model, considering both measured and artificial joints. Measured joints are obtained from the photogrammetry analysis on the excavation face. Statistical tools then facilitate to derive artificial joints within the rock mass. Key blocks are searched to provide guidance on potential reinforcement measures. The discretized blocky system is subsequently implemented into a discontinuous deformation analysis (DDA) code. Strength reduction technique is employed to analyze the stability of the slope, where the factor of safety can be obtained once excessive deformation of slope profile is observed. The combined analysis approach also provides the failure mode, which can be used to guide the choice of strengthening strategy if needed. Finally, an illustrated example is presented for the analysis of a rock slope of 20 m height inclined at $60^{\circ}$ using combined GeoSMA-3D and DDA calculation.

Optimum Reinforcement Conditions of Large Diameter Reinforcement for Steep Slope of Conventional Railway Embankment under Train Loading (기존선 성토사면 급구배화를 위한 열차 하중 하 대구경 봉상보강재의 최적 보강조건)

  • Kwak, Chang-Won;Kim, Dae-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.43-50
    • /
    • 2016
  • A reinforcement is required to ensure the structural safety in case of railway embankment excavation under railway load. A large diameter soil nailing with concrete wall is applied as the reinforcement method instead of the conventional soil nailing system. In this study, a series of 3 dimensional numerical analyses are performed to investigate the optimum reinforcement considering 15 different conditions based on the length, lateral spacing, diameter, and inclination of the reinforcement. The interface between soil nail and perimetric grout is considered by means of cohesion, stiffness and perimeter of the grout. 0.3 m of reinforcement diameter is assessed as the most appropriate based on the economical viewpoint though ground displacement decreases with the increase of diameter, however the difference of displacement is negligible between 0.4 m and 0.3 m of diameter. Surface settlement, lateral displacement of wall, and stress of reinforcement are calculated and economic viewpoint to reinforce embankment considered. Consequently, the optimum reinforcement conditions considering those factors are evaluated as 3 m in length, 0.3 m in diameter, 1.5 m in lateral spacing, and 10 degree of inclination angle in the case of 3 m of excavation depth. Additionally, inclined potential failure surface occurs with approximately 60 degrees from the end of nails and the surface settlement and wall lateral displacement are restrained successfully by the large diameter soil nailing, based on the result of shear strain rate.

Behavior of Seepage and Seismic for the Deterioration Reservoir Using Numerical Analysis (수치해석에 의한 노후저수지의 침투 및 동적거동)

  • Park, Sung-Yong;Chang, Suk-Hyun;Lim, Hyun-Taek;Kim, Jung-Meyon;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.3
    • /
    • pp.81-90
    • /
    • 2016
  • It is significant to redevelop the deterioration reservoir through raising for countermeasure to climate change and Earthquake improvement of reservoir. This study aims to investigate the behavior of deterioration reservoir with poor-fabricated core subjected to raising water level and earthquake using numerical analysis. From the analysis results, water level raising and earthquakes induce crack and subsidences at the crown and the front side of deterioration reservoir. For the reinforcement of the deterioration reservoir is required appropriate measures method and raised method suitable, drainage and slope protection method judged to be necessary.

A Study on Characteristics of Shear Strength in Rock-soil Contacts (암석과 토층 경계면의 전단강도 특성연구)

  • Lee, Su Gon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.3
    • /
    • pp.49-54
    • /
    • 2001
  • It is common that the soil layer is a few meters below the earth's surface and the rock mass is below the soil layer in the view of geological characteristics in Korea. And the boundary between rock and soil is clearly divided. When dealing with the stability of rock masses, as in the case of rock slopes or dam foundations, the majority of the collapses is not within the soil layer, but within the soil-rock boundary. Therefore it is important to identify the shear strength characteristics between soil-rock boundary. And then in the method of reinforcement on landslide this chose a cut slope near Daemo elementary school in Seoul, surveyed shear strength between soil-rock contacts and considered a large scale collapse using a limit equilibrium method.

  • PDF

A Stability Analysis of Geosynthetics Reinforced Soil Slopes I. - Slope Stability Analysis Considering Reinforcing Effects - (토목섬유 보강 성토사면의 안정해석 I. - 보강효과를 고려한 사면안정해석 -)

  • Kim Kyeong-Mo;Kim Hong-Taek;Lee Eun-Soo;Kim Young-Yoon;Ahn Kwang-Kuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.95-105
    • /
    • 2005
  • Generally, a modified version of limit equilibrium method can be used to evaluate a slope stability of the geosynthetic reinforced soil slopes. In most cases, resisting effects of geosynthetic reinforcement are dealt with considering an increased shear strength on the potential slip surface. However, it is not clear that the methods satisfy all three equilibrium equations. As we know, the pattern of normal stress distribution along the slip surface is the key factor in calculating the safety factor of slopes. In this study, the new slope stability analysis method in which not only reinforcing effects of geosynthetics can be considered but also all three equilibrium equations can be satisfied was proposed with assuming the normal stress distribution along the slip surface as quadratic curve with horizontal $\chi-coordinate$. A number of illustrative examples, including published slope stability analysis examples for the reinforced and unreinforced soil slopes, loading test of large scale reinforced earth wall and centrifuge model tests on the geotextile reinforced soil slopes, were analyzed. As a result, it is shown that the newly suggested method yields a relatively accurate factor of safety for the reinforced and unreinforced soil slopes.

Estimation of Landslide Risk based on Infinity Flow Direction (무한방향흐름기법을 이용한 산사태 위험도 평가)

  • Oh, Sewook;Lee, Giha;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.5-18
    • /
    • 2019
  • In this study, it was conducted a broad-area landslide analysis for the entire area of Kyungsangbuk-do Province based on spatially-distributed wetness index and root reinforcement infinity slope stability theory. Specifically, digital map, soil map and forest map were used to extract topological and geological parameters, and to build spatially-distributed database at $10m{\times}10m$ resolution. Infinity flow direction method was used for rain catchment area to produce spatially-distributed wetness index. The safety level that indicates risk of a broad-area landslide was classified into four groups. The result showed that areas with a high estimated risk of a landslide coincided with areas that recently went through an actual landslide, including Bonghwa and Gimcheon, and unstable areas were clustered around mountainous areas. A comparison between the estimation result and the records of actual landslide showed that the analysis model is effective for estimating a risk of a broad-area landslide based on accumulation of reasonable parameters.