• Title/Summary/Keyword: Slope protection

Search Result 208, Processing Time 0.039 seconds

The engineering merit of the "Effective Period" of bilinear isolation systems

  • Makris, Nicos;Kampas, Georgios
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.397-428
    • /
    • 2013
  • This paper examines whether the "effective period" of bilinear isolation systems, as defined invariably in most current design codes, expresses in reality the period of vibration that appears in the horizontal axis of the design response spectrum. Starting with the free vibration response, the study proceeds with a comprehensive parametric analysis of the forced vibration response of a wide collection of bilinear isolation systems subjected to pulse and seismic excitations. The study employs Fourier and Wavelet analysis together with a powerful time domain identification method for linear systems known as the Prediction Error Method. When the response history of the bilinear system exhibits a coherent oscillatory trace with a narrow frequency band as in the case of free vibration or forced vibration response from most pulselike excitations, the paper shows that the "effective period" = $T_{eff}$ of the bilinear isolation system is a dependable estimate of its vibration period; nevertheless, the period associated with the second slope of the bilinear system = $T_2$ is an even better approximation regardless the value of the dimensionless strength,$Q/(K_2u_y)=1/{\alpha}-1$, of the system. As the frequency content of the excitation widens and the intensity of the acceleration response history fluctuates more randomly, the paper reveals that the computed vibration period of the systems exhibits appreciably scattering from the computed mean value. This suggests that for several earthquake excitations the mild nonlinearities of the bilinear isolation system dominate the response and the expectation of the design codes to identify a "linear" vibration period has a marginal engineering merit.

Analysis of Land Suitability and Ecological Environment Using GIS Focused on the Evaluation Model for Designating of Natural Ecological Preservation Zone (지리정보체계를 이용한 생태환경분석 및 적지분석: 자연생태계 보전지역 설정 및 평가 모형을 중심으로)

  • Lee, Myungwoo
    • Journal of Environmental Impact Assessment
    • /
    • v.6 no.2
    • /
    • pp.61-80
    • /
    • 1997
  • This study tried to propose the guidelines for the ecological preservation zoning in Korea. So some related laws and regulations were inspected, which were Natural Environment Preservation Act, Nature Park Act, Cultural Asset Conservation Act, Forest Act and Urban Planning Act. In these acts, I could find several concepts related to the ecosystem that are described as the protection area. But there aren't detailed and practical characteristics in those concepts. So for making the practical concept of ecosystem preservation, I considered Multiple Use Module, Wildlife habitat model, and Environmental evaluation model. Thorough this step, the process and methodology was established for evaluating and analysing. The potentiality of the GIS system was inspected. So the TM5 scene of the site was acquired and processed by ER-Mapper, Idrisi, Arc/Info and Arcview. And several digitized data were input by scanning and vecterizing. The Erdas format was mostly exchangeable to any program. The site is the Byonsan Peninsula National Park. The forest stand information and topographic data were digitized, types of which are forest year, DBH, density, slope, aspect etc. And also the watershed boundary, roads and paths, natural and cultural resources were mapped and analysed. Modelling of preservation suitability found the dispersed patterns for the best suitable zone through all the site. And the development potential areas were checked on downwatershed. This patterns are thought to result from the forest location for the wildlife habitat and the low altitude and no-steep slopes for developing. And Early warning system concept was introduced by overlapping these two patterns on the both potential area. As the conclusions, I proposed that the preservation zone be assigned according to the watershed unit as the main ecosystem zone. This main area should be linked by the eco-corridor through the point type eco-system. Finally, I thought the comprehensive information system should be established for making the rational and efficient decision making in natural area.

  • PDF

Derivation of Ecological Protective Concentration using the Probabilistic Ecological Risk Assessment applicable for Korean Water Environment: (I) Cadmium

  • Nam, Sun-Hwa;Lee, Woo-Mi;An, Youn-Joo
    • Toxicological Research
    • /
    • v.28 no.2
    • /
    • pp.129-137
    • /
    • 2012
  • Probabilistic ecological risk assessment (PERA) for deriving ecological protective concentration (EPC) was previously suggested in USA, Australia, New Zealand, Canada, and Netherland. This study suggested the EPC of cadmium (Cd) based on the PERA to be suitable to Korean aquatic ecosystem. First, we collected reliable ecotoxicity data from reliable data without restriction and reliable data with restrictions. Next, we sorted the ecotoxicity data based on the site-specific locations, exposure duration, and water hardness. To correct toxicity by the water hardness, EU's hardness corrected algorithm was used with slope factor 0.89 and a benchmark of water hardness 100. EPC was calculated according to statistical extrapolation method (SEM), statistical extrapolation $method_{Acute\;to\;chronic\;ratio}$ ($SEM_{ACR}$), and assessment factor method (AFM). As a result, aquatic toxicity data of Cd were collected from 43 acute toxicity data (4 Actinopterygill, 29 Branchiopoda, 1 Polychaeta, 2 Bryozoa, 6 Chlorophyceae, 1 Chanophyceae) and 40 chronic toxicity data (2 Actinopterygill, 23 Branchiopoda, 9 Chlorophyceae, 6 Macrophytes). Because toxicity data of Cd belongs to 4 classes in taxonomical classification, acute and chronic EPC (11.07 ${\mu}g/l$ and 0.034 ${\mu}g/l$, respectively) was calculated according to SEM technique. These values were included in the range of international EPCs. This study would be useful to establish the ecological standard for the protection of aquatic ecosystem in Korea.

Optimizing the Life Cycle Cost of a Solar Water Heating System in an Office Building Through Simulation (사무소건물 태양열급탕시스템의 LCC 최적화 시뮬레이션)

  • Ko, Myeong-Jin;Choi, Doo-Sung;Chang, Jae-D.;Kim, Yong-Shik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.859-866
    • /
    • 2010
  • This study examined the economics of a solar water heating system for an office building using life cycle cost (LCC) optimization simulations. The numerical simulations were conducted with TRNSYS and GenOpt employing the Hooke-Jeeves algorithm. The solar collector area, slope, mass flow rate per collector area and storage tank volume were selected as the main design parameters of the solar water heating system. The LCC optimization simulations of the system were carried out for cases where water temperature was $60^{\circ}C$ and $50^{\circ}C$. The results showed that for water temperature at $60^{\circ}C$ and $50^{\circ}C$ the collector area could be decreased by 17% and 28%, storage tank volume could be decreased by 49% and 54%, and mass flow rate per collector area increased by 5% and 9% respectively compared to a non-optimized system. The LCC of the system was reduced by 4% for $60^{\circ}C$ and 7% for $50^{\circ}C$. The initial installation cost of the system was reduced by 24% for $60^{\circ}C$ and 34% for $50^{\circ}C$. However, the operating cost of the system increased by 16% for $60^{\circ}C$ and 36% for $50^{\circ}C$ compared to a traditional solar water heating system.

Vegetation Structure of Yongso Valley in the Nakdong-jeongmaek, Samcheok-si (낙동정맥 삼척시 용소골 계곡의 식생구조)

  • Cho, Hyun-Seo;Lee, Soo-Dong
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.5
    • /
    • pp.582-590
    • /
    • 2010
  • Baekdudaegan field survey has been proposed and presented as a various plan such as field survey analysis, management and restoration plan, etc. Whereas, the concerns of the Jeongmaek has increased continuously, nevertheless there is no research of present condition for Jeongmaek. This paper is to contribute to suggest for management and restoration as a basic study of vegetation structure in Yongso valley. We set up 30 plots($100m^2$) to verify the vegetation structure. As a result of classification analysis used by DCA, the type of 5 communities i.e. Pinus densiflora community, Betula schmidtii community, Populus maximowiczii community, Quercus mongolica community, Q. variabilis community were the most representative of Yongso valley vegetation communities. P. densiflora community was mainly distributed in the ridge of mountain, ridge of steep slope and stony area. In that reason, they avoid to compete with B. schmidtii community and Q. spp. community. In addition, the appearance of Rhododendron micranthum was mainly characteristics in the P. densiflora community. Species diversity indices(H') of groups were ranged from 0.7914~0.9942, the tree ages were 30~115 years. According to these results, the forests of Yongso valley not only form muti-layer vegetation structures but also have a great ecological value for protection and preservation.

Analysis of Groundwater Pollution Potential and Development of Graphic User Interface using DRASTIC System (DRASTIC을 이용한 지하수 오염 가능성 분석 및 그래픽 사용자 인터페이스 개발연구)

  • 민경덕;이영훈;이사로;김윤종;한정상
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.3 no.2
    • /
    • pp.101-109
    • /
    • 1996
  • DRASTIC system was used in this study that was developed by U.S. EPA and is widely used for evaluating relative groundwater pollution potential by using hydrogeological factors. The DRASTIC system can be used for selection of well sites, selection of waste disposal sites and basic data of landuse for groundwater protection, and monitoring purpose and efficient allocation of resource for remediation. This study analyzed regional groundwater pollution potential around Chungju Lake using the DRASTIC system. Hydrogeological factors used in this study are depth to water, net recharge, aquifer media, soil media, slope and hydraulic conductivity. For accurate analysis, lineament density that is extracted from image processing of satellite image is overlaid to the DRASTIC system. Results of this study are mapped so groundwater pollution potential and risk degrees can be understood easily and quickly. A graphic user interface is developed to process the data conveniently.

  • PDF

Development of Sequential Sampling Plan for Bacterial Leaf Blight of Garlic by Cluster Sampling (클러스터 조사에 의한 마늘 세균점무늬병의 축차표본조사법 개발)

  • Song, Jeong Heub;Yang, Cheol Joon;Yang, Young Taek;Shim, Hong Sik;Jwa, Chang Sook
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.268-272
    • /
    • 2015
  • Bacterial leaf blight caused by Pseudomonas syringae pv. porri is one of the major bacterial diseases of garlic (Allium sativum). In South Korea, the disease has only been observed in garlic-growing regions of Jeju island. The spatial distribution pattern of the disease was analyzed by binary power law, in which the natural logarithm of the observed variance is regressed on the natural logarithm of the binomial variance. The estimated slope (b=1.361) of the regression was greater than 1 which meant that the diseased plants were aggregated. The sequential sampling plans were developed for estimating the mean incidence rate ($p_m$) and classifying the mean incidence as being below or above the critical incidence rate ($p_t$). These results could be used on more efficient and higher precisive sampling for bacterial blight of garlic compared to fixed sample sized sampling.

Effect of seismic acceleration directions on dynamic earth pressures in retaining structures

  • Nian, Ting-Kai;Liu, Bo;Han, Jie;Huang, Run-Qiu
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.263-277
    • /
    • 2014
  • In the conventional design of retaining structures in a seismic zone, seismic inertia forces are commonly assumed to act upwards and towards the wall facing to cause a maximum active thrust or act upwards and towards the backfill to cause a minimum passive resistance. However, under certain circumstances this design approach might underestimate the dynamic active thrust or overestimate the dynamic passive resistance acting on a rigid retaining structure. In this study, a new analytical method for dynamic active and passive forces in c-${\phi}$ soils with an infinite slope was proposed based on the Rankine earth pressure theory and the Mohr-Coulomb yield criterion, to investigate the influence of seismic inertia force directions on the total active and passive forces. Four combinations of seismic acceleration with both vertical (upwards or downwards) and horizontal (towards the wall or backfill) directions, were considered. A series of dimensionless dynamic active and passive force charts were developed to evaluate the key influence factors, such as backfill inclination ${\beta}$, dimensionless cohesion $c/{\gamma}H$, friction angle ${\phi}$, horizontal and vertical seismic coefficients, $k _h$ and $k_v$. A comparative study shows that a combination of downward and towards-the-wall seismic inertia forces causes a maximum active thrust while a combination of upward and towards-the-wall seismic inertia forces causes a minimum passive resistance. This finding is recommended for use in the design of retaining structures in a seismic zone.

Assessment of Regional Groundwater Pollution Hazard using Potential Pollutant of Pohang Area (잠재오염원을 이용한 포항지역의 광역적 지하수 오염 위험성 평가)

  • Lee, Sa-Ro;Kim, Yong-Seong;Kim, Deuk-Geun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.1-13
    • /
    • 2006
  • The aim of the study is to assess groundwater pollution hazard of Pohang city using the DRASTIC system developed by the US Environmental Protection Agency (USEPA). Hydrogeological spatial databases of the system include information on depth to groundwater, net recharge, aquifer media, soil media, topographic slope, hydraulic conductivity, lineament and potential pollution source. With GIS based on these hydrogeological databases and the DRASTIC system, the regional groundwater vulnerability of the study area was assessed. Then the vulnerability was overlaid with potential pollution source and the regional groundwater pollution hazard was assessed by administrative district. From the results of the study, areas where need the counter plan for groundwater pollution and where should be managed for the groundwater pollution, are identified.

  • PDF

Optimization Design of Solar Water Heating System based on Economic Evaluation Criterion using a Genetic Algorithm (유전알고리즘 이용 경제적 평가기준에 따른 태양열급탕시스템 최적화 설계에 관한 연구)

  • Choi, Doosung;Ko, Myeongjin;Park, Kwang-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.73-89
    • /
    • 2016
  • To assure maximum economic benefits and the energy performance of solar water heating systems, the proper sizing of components and operating conditions need to be optimized. In recent years, a number of studies to design optimally solar water heating systems have been tried. This paper presents a design method for optimizing the various capacity-related and installation-related design variables based on life cycle cost using a genetic algorithm. The design variables considered in this study included the types and numbers of solar collector and auxiliary heaters; the types of storage tanks and heat exchangers; the solar collector slope; mass flow rates of the fluid on the hot and cold sides. The suggested method was applied for optimizing a solar water heating system for an elementary school in Seoul, South Korea. In addition, the effectiveness of the proposed optimization method was assessed by analyzing the obtained optimal solutions of six case studies, each of which was simulated with different solar fractions. It is observed that a trade-off between the equipment cost and the energy cost results in an optimal design that yields the lowest life cycle cost. Therefore, it could be helpful to apply the optimal solar water heating system by comparing the various design solutions obtained by using the optimization method instead of the engineer's experience and intuition.